Solveeit Logo

Question

Question: The relationship between \[{{K}_{p}}\] and \[{{K}_{c}}\] is correctly shown as: This question has ...

The relationship between Kp{{K}_{p}} and Kc{{K}_{c}} is correctly shown as:
This question has multiple correct options
(A) Kc=Kp(RT)Δn{{K}_{c}}={{K}_{p}}{{(RT)}^{\Delta n}}
(B) Kp=Kp(RT)Δn{{K}_{p}}={{K}_{p}}{{(RT)}^{-\Delta n}}
(C) Kc=Kp(RT)Δn{{K}_{c}}={{K}_{p}}{{(RT)}^{\Delta n}}
(D) Kc=Kp(RT)Δn{{K}_{c}}={{K}_{p}}{{(RT)}^{-\Delta n}}

Explanation

Solution

Hint: Here we know that Kc{{K}_{c}} and Kp{{K}_{p}} are equilibrium constants of gaseous mixture. Here Kc{{K}_{c}} is for molar concentration and Kp{{K}_{p}} is for partial pressure of the gases inside a closed system.

Step by step solution:
Kc{{K}_{c}}and Kp{{K}_{p}} are the equilibrium constants of gaseous mixtures. Where
Kc{{K}_{c}} is defined by molar concentration
Kp{{K}_{p}} is defined by partial pressure.
Let’s consider a reversible reaction:
aA+bBcC+dDaA+bB\underset{{}}{\leftrightarrows}cC+dD
Now equilibrium constant for the reaction expressed in the terms of concentration:
Kc=[C]c[D]d[A]a[B]b{{K}_{c}}=\dfrac{{{[C]}^{c}}{{[D]}^{d}}}{{{[A]}^{a}}{{[B]}^{b}}}
If the equilibrium reaction involves gaseous species. The equilibrium constant in terms of partial pressures is:
Kp=[pC]c[pD]d[pA]a[pB]b{{K}_{p}}=\dfrac{{{[pC]}^{c}}{{[pD]}^{d}}}{{{[pA]}^{a}}{{[pB]}^{b}}}
And the ideal gas equation:
pV=nRTpV=nRT
By rearrangement:
p=nRTV=CRTp=\dfrac{nRT}{V}=CRT
So, from the ideal gas equation:
pA = [A] RTpA\text{ }=\text{ }\left[ A \right]\text{ }RT, pB = [B] RT\text{ }pB\text{ }=\text{ }\left[ B \right]\text{ }RT, pC = [C] RT\text{ }pC\text{ }=\text{ }\left[ C \right]\text{ }RT and  pD = [D] RT\text{ }pD\text{ }=\text{ }\left[ D \right]\text{ }RT
Now we will put all these values of partial pressure in the equation of Kp{{K}_{p}}:
Kp=([C] RT)c([D] RT)d([A] RT)a([B] RT)b{{K}_{p}}=\dfrac{{{(\left[ C \right]\text{ }RT)}^{c}}{{(\left[ D \right]\text{ }RT)}^{d}}}{{{(\left[ A \right]\text{ }RT)}^{a}}{{(\left[ B \right]\text{ }RT)}^{b}}}
By rearranging the equation and puttingKc=[C]c[D]d[A]a[B]b{{K}_{c}}=\dfrac{{{[C]}^{c}}{{[D]}^{d}}}{{{[A]}^{a}}{{[B]}^{b}}}:
Kp=[C]c(RT)c[D]d(RT)d[A]a(RT)a[B]bRT)b{{K}_{p}}=\dfrac{{{\left[ C \right]}^{c}}{{\text{(}RT)}^{c}}{{\left[ D \right]}^{d}}{{(RT)}^{d}}}{{{\left[ A \right]}^{a}}{{\text{(}RT)}^{a}}{{\left[ B \right]}^{b}}{{\text{( }RT)}^{b}}}
Kp=Kc(RT)c(RT)d(RT)aRT)b{{K}_{p}}={{K}_{c}}\dfrac{{{\text{(}RT)}^{c}}{{(RT)}^{d}}}{{{\text{(}RT)}^{a}}{{\text{( }RT)}^{b}}}
Kp=Kc(RT)(c+d)(a+b){{K}_{p}}={{K}_{c}}{{\text{(}RT)}^{(c+d)-(a+b)}}
Let Δn=(c+d)(a+b)\Delta n=(c+d)-(a+b)
Then,
Kp=Kc(RT)Δn{{K}_{p}}={{K}_{c}}{{\text{(}RT)}^{\Delta n}}
So, from the above derivation we can say that the correct relationship between Kp{{K}_{p}} and Kc{{K}_{c}}: Kp=Kc(RT)Δn{{K}_{p}}={{K}_{c}}{{\text{(}RT)}^{\Delta n}}
And Kc=Kp(RT)Δn{{K}_{c}}={{K}_{p}}{{(RT)}^{-\Delta n}}
Then the correct answer is option “D”.

Note: The equilibrium constants do not include the concentrations of single components such as liquids and solid, and they do not have any units. These constants are only for ideal gases.