Solveeit Logo

Question

Question: The relation between young’s modulus \(Y\), bulk modulus \(K\), and modulus of elasticity \(\sigma \...

The relation between young’s modulus YY, bulk modulus KK, and modulus of elasticity σ\sigma is
A) 1y=1k+3η\dfrac{1}{y} = \dfrac{1}{k} + \dfrac{3}{\eta }
B) 3y=1η+13k\dfrac{3}{y} = \dfrac{1}{\eta } + \dfrac{1}{{3k}}
C) 1y=3η+13k\dfrac{1}{y} = \dfrac{3}{\eta } + \dfrac{1}{{3k}}
D) 1η=3y+13k\dfrac{1}{\eta } = \dfrac{3}{y} + \dfrac{1}{{3k}}

Explanation

Solution

Find the two relations of young’s modulus with bulk modulus and modulus of rigidity respectively. Then try to eliminate the stress applied (σ)\left( \sigma \right) from both the relations.

Complete answer:
So we have to interrelate the young’s modulus, bulk modulus, and modulus of elasticity. To introduce young’s modulus YY, we have to provide longitudinal strain in the object. Since there is a longitudinal strain, so with that a lateral strain would also be there which helps to introduce the term Poisson’s ratio σ\sigma.
To introduce bulk modulus KK, we have to provide volumetric strain in all directions of the object.
Let α\alpha =longitudinal strain per unit stress
And β\beta =lateral strain per unit stress.
Then Poisson’s ratio, σ=lateral strainlongitudinal strain=βα\sigma = \dfrac{{\text{lateral strain}}}{{\text{longitudinal strain}}} = \dfrac{\beta }{\alpha }
Young’s modulus, Y=longitudinal stresslongitudinal strain=1αY = \dfrac{{\text{longitudinal stress}}}{{\text{longitudinal strain}}} = \dfrac{1}{\alpha }
And Bulk modulus, K=hydrostatic strainvolumetric strain=13(α2β)K = \dfrac{{\text{hydrostatic strain}}}{{\text{volumetric strain}}} = \dfrac{1}{{3\left( {\alpha - 2\beta } \right)}}
Now to introduce σ\sigma in the formula of bulk modulus, we do as follows
K=13(α2β)=13α(12βα)K = \dfrac{1}{{3\left( {\alpha - 2\beta } \right)}} = \dfrac{1}{{3\alpha \left( {1 - 2\dfrac{\beta }{\alpha }} \right)}}
Since σ=βα\sigma = \dfrac{\beta }{\alpha } and Y=1αY = \dfrac{1}{\alpha } , so by substituting these values in above equation, we get
K=Y3(12σ)(1)K = \dfrac{Y}{{3\left( {1 - 2\sigma } \right)}} \cdot \cdot \cdot \cdot \cdot \cdot \left( 1 \right)
Now looking into options, as we see that the options are given in terms of YY, KK and modulus of rigidity(η)\left( \eta \right). For this we use the formula
Y=2η(1+σ)(2)Y = 2\eta \left( {1 + \sigma } \right) \cdot \cdot \cdot \cdot \cdot \cdot \left( 2 \right)
Now get the value of σ\sigma from both the equation (1)\left( 1 \right)and (2)\left( 2 \right)
From equation(1)\left( 1 \right),
12σ=Y3K 2σ=1Y3K  1 - 2\sigma = \dfrac{Y}{{3K}} \\\ \to 2\sigma = 1 - \dfrac{Y}{{3K}} \\\
σ=12(1Y3K)(3)\Rightarrow \sigma = \dfrac{1}{2}\left( {1 - \dfrac{Y}{{3K}}} \right) \cdot \cdot \cdot \cdot \cdot \cdot \left( 3 \right)
Now from equation (2)\left( 2 \right)
σ=Y2η1(4)\sigma = \dfrac{Y}{{2\eta }} - 1 \cdot \cdot \cdot \cdot \cdot \cdot \left( 4 \right)
By comparing equations (3)\left( 3 \right) and(4)\left( 4 \right), we have
12(1Y3K)=Y2η1 32Y6K=Y2η3Y3K=Yη  \dfrac{1}{2}\left( {1 - \dfrac{Y}{{3K}}} \right) = \dfrac{Y}{{2\eta }} - 1 \\\ \dfrac{3}{2} - \dfrac{Y}{{6K}} = \dfrac{Y}{{2\eta }} \Leftrightarrow 3 - \dfrac{Y}{{3K}} = \dfrac{Y}{\eta } \\\
On further solving, we get
3=Yη+Y3K 3Y=1η+13K  3 = \dfrac{Y}{\eta } + \dfrac{Y}{{3K}} \\\ \Rightarrow \dfrac{3}{Y} = \dfrac{1}{\eta } + \dfrac{1}{{3K}} \\\

\therefore The relation between young’s modulus YY, bulk modulus KK, and modulus of elasticity σ\sigma is 3Y=1η+13K\dfrac{3}{Y} = \dfrac{1}{\eta } + \dfrac{1}{{3K}}. Hence, the correct option is B.

Note:
Don’t confuse it with too many modulus. Basically there are three types of modulus in elasticity: Modulus of elasticity or Young’s modulus, Bulk modulus, and Modulus of rigidity or Shear modulus. While finding relations, look at the options to get the idea to which format we have to find the ultimate relationship.