Solveeit Logo

Question

Physics Question on Current electricity

The relation between voltage sensitivity (σv)\left(\sigma_{ v }\right) and current sensitivity (σ1)\left(\sigma_{1}\right) of a moving coil galvanometer is (resistance of galvanometer is G).

A

σiG=σV\frac{\sigma_{i}}{G}=\sigma_{ V }

B

σVG=σi\frac{\sigma_{ V }}{ G }=\sigma_{ i }

C

Gσi=σV\frac{ G }{\sigma_{i}}=\sigma_{ V }

D

GσV=σv\frac{ G }{\sigma_{ V }}=\sigma_{ v }

Answer

σiG=σV\frac{\sigma_{i}}{G}=\sigma_{ V }

Explanation

Solution

We know in a galvanometer, Current sensitivity, σi=θI\sigma_{i}=\frac{\theta}{ I }, where θ\theta is the deflection produced. Voltage sensitivity, σv=θV\sigma_{ v }=\frac{\theta}{ V } But V=IR=IGV=I R=I G as given Gis the resistance of the galvanometer. Therefore, σv=θIG=σiG\sigma_{ v }=\frac{\theta}{ IG }=\frac{\sigma_{ i }}{ G } i.e., Voltage sensitivity = current sensitivity  Resistance =\frac{\text { current sensitivity }}{\text { Resistance }} The above relation implies that if current sensitivity increases as well as the resistance increases in same order, the voltage sensitivity will remain unchanged.