Solveeit Logo

Question

Physics Question on Motion in a straight line

The relation between time tt and distance xx is t=ax2+bxt = ax^2 + bx, where aa and bb are constants. The acceleration is:

A

2abv2-2abv^2

B

2bv32bv^3

C

2av3-2av^3

D

2av22av^2

Answer

2av3-2av^3

Explanation

Solution

Given t=ax2+bxt = ax^2 + bx Differentiating w.r.t.tw.r.t. \,t dtdt=2axdtdt+bdxdt\frac{dt}{dt}=2\,ax \frac{dt}{dt}+b \frac{dx}{dt} v=dxdt=1(2ax+b)v=\frac{dx}{dt}=\frac{1}{\left(2\,ax+b\right)} Again differentiating, w.r.t.tw.r.t. \,t d2xdt2=2a(2ax+b)2.dxdt\frac{d^{2}x}{dt^{2}}=\frac{-2a}{\left(2\,ax+b\right)^{2}}.\frac{dx}{dt} f=d2xdt2\therefore f=\frac{d^{2}x}{dt^{2}} =1(2ax+b)2.2a(2ax+b)=-\frac{-1}{\left(2\,ax+b\right)^{2}}. \frac{2a}{\left(2\,ax+b\right)} or f=2a(2ax+b)3f=\frac{-2a}{\left(2\,ax+b\right)^{3}} f=2av3\therefore f=-2\,av^{3}