Solveeit Logo

Question

Question: The relation between the real numbers a and b, which satisfy the equation \(\frac{1 - ix}{1 + ix}\)=...

The relation between the real numbers a and b, which satisfy the equation 1ix1+ix\frac{1 - ix}{1 + ix}= a –ib, for some real value of x, is

A

(a – b) (a + b) = 1

B

(aba+b)\left( \frac{a - b}{a + b} \right)=1

C

a2 + b2 = 1

D

None of these

Answer

a2 + b2 = 1

Explanation

Solution

Sol. 1ix1+ix\frac{1 - ix}{1 + ix}= a – ib Ž 1 –ix = (a – ib) (1 + ix)

Ž 1 – ix = a + aix – ib + bx

Ž (1 – a + ib) = x [ai + b + i]

Ž x = (1a)+ibb+i(a+1)\frac{(1 - a) + ib}{b + i(a + 1)}× bi(a+1)bi(a+1)\frac{b - i(a + 1)}{b - i(a + 1)}

b(1a)+b(a+1)+i(b2(1a2))b2+(a+1)2\frac{b(1 - a) + b(a + 1) + i(b^{2} - (1 - a^{2}))}{b^{2} + (a + 1)^{2}}

x is real if b2 + a2 – 1 = 0

i.e. a2 + b2 = 1