Solveeit Logo

Question

Physics Question on Nuclei

The relation between λλ and T12T_\frac 12is:
(T12=half life, λdecay constant)(T_\frac 12 = half\ life, \ λ→decay\ constant)

A

T12=ln 2λT_{\frac 12}=\frac {ln\ 2}{λ}

B

T12ln 2=λT_{\frac12} ln\ 2=λ

C

T12=1λT_{\frac12}=\frac 1λ

D

(λ+T12)=ln 22(λ+T_{\frac 12})=\frac {ln\ 2}{2}

Answer

T12=ln 2λT_{\frac 12}=\frac {ln\ 2}{λ}

Explanation

Solution

The decay of atoms over time can be described using the formula Nt=N0.e(λt)N_t = N_0 . e^{(-λt)},
where
NtN_t represents the number of atoms at time tt
N0N_0 is the initial number of atoms,
λλ is the decay constant.
For a specific case where tt equals T12T_\frac12:
2No=N0.e(λ.T12)2N_o = N_0 . e^{(-λ .T_\frac12)}
Simplifying this expression, we find:
2=e(λ.T12)2 = e^{(-λ . T_\frac 12)}
Taking the natural logarithm (ln) of both sides, we get:
ln (2)=λ.T12ln\ (2) = -λ . T_\frac 12
Now, solving for T12T_\frac12
T12=ln (2)λT_\frac 12 = \frac {ln\ (2)}{λ}
This equation establishes the relationship between the decay constant (λ)(λ) and the half-life (T12)(T_\frac 12).