Solveeit Logo

Question

Question: The relation between electric field E and magnetic field H in electromagnetic wave is: A. \[E=H\] ...

The relation between electric field E and magnetic field H in electromagnetic wave is:
A. E=HE=H
B. E=μoεoHE=\dfrac{{{\mu }_{o}}}{{{\varepsilon }_{o}}}H
C. E=μoεoHE=\sqrt{\dfrac{{{\mu }_{o}}}{{{\varepsilon }_{o}}}}H
D. E=εoμoHE=\sqrt{\dfrac{{{\varepsilon }_{o}}}{{{\mu }_{o}}}}H

Explanation

Solution

The ratio of the magnitudes of electric and magnetic fields equals the speed of light in free space.

Formula used:
In free space, where there is no charge or current, the four Maxwell’s equations are of the following form:

E=0 H=0 ×E=μoHt ×H=εoEt  \overset{\to }{\mathop{\nabla }}\,\cdot \overset{\to }{\mathop{E}}\,=0 \\\ \overset{\to }{\mathop{\nabla }}\,\cdot \overset{\to }{\mathop{H}}\,=0 \\\ \overset{\to }{\mathop{\nabla }}\,\times \overset{\to }{\mathop{E}}\,=-{{\mu }_{o}}\dfrac{\partial \overset{\to }{\mathop{H}}\,}{\partial t} \\\ \overset{\to }{\mathop{\nabla }}\,\times \overset{\to }{\mathop{H}}\,={{\varepsilon }_{o}}\dfrac{\partial \overset{\to }{\mathop{E}}\,}{\partial t} \\\

Complete step by step solution:
Consider the plane wave equations of electric wave and magnetic wave:

E(r,t)=Eoej(krωt) H(r,t)=Hoej(krωt)  \overset{\to }{\mathop{E}}\,\left( \overset{\to }{\mathop{r}}\,,t \right)=\overset{\to }{\mathop{{{E}_{o}}}}\,{{e}^{j(\overset{\to }{\mathop{k}}\,\cdot \overset{\to }{\mathop{r}}\,-\omega t)}} \\\ \overset{\to }{\mathop{H}}\,\left( \overset{\to }{\mathop{r}}\,,t \right)=\overset{\to }{\mathop{{{H}_{o}}}}\,{{e}^{j(\overset{\to }{\mathop{k}}\,\cdot \overset{\to }{\mathop{r}}\,-\omega t)}} \\\

Where Eo\overset{\to }{\mathop{{{E}_{o}}}}\, and Ho\overset{\to }{\mathop{{{H}_{o}}}}\, are complex amplitudes, which are constants in space and time, k\overset{\to }{\mathop{k}}\, is the wave vector determining the direction of propagation of the wave. k\overset{\to }{\mathop{k}}\, is defined as
k=2πλn=ωcn\overset{\to }{\mathop{k}}\,=\dfrac{2\pi }{\lambda }\overset{\wedge }{\mathop{n}}\,=\dfrac{\omega }{c}\overset{\wedge }{\mathop{n}}\,
Where n\overset{\wedge }{\mathop{n}}\, is the unit vector along the direction of propagation.
Substituting the plane wave solutions in equations E=0\overset{\to }{\mathop{\nabla }}\,\cdot \overset{\to }{\mathop{E}}\,=0 and H=0\overset{\to }{\mathop{\nabla }}\,\cdot \overset{\to }{\mathop{H}}\,=0 respectively:
kE=0\overset{\to }{\mathop{k}}\,\cdot \overset{\to }{\mathop{E}}\,=0 and kH=0\overset{\to }{\mathop{k}}\,\cdot \overset{\to }{\mathop{H}}\,=0
Thus, E\overset{\to }{\mathop{E}}\, and H\overset{\to }{\mathop{H}}\, are both perpendicular to the direction of propagation vector k\overset{\to }{\mathop{k}}\,.
This implies that electromagnetic waves are transverse in nature.
Substituting the plane wave solutions in equations ×E=μoHt\overset{\to }{\mathop{\nabla }}\,\times \overset{\to }{\mathop{E}}\,=-{{\mu }_{o}}\dfrac{\partial \overset{\to }{\mathop{H}}\,}{\partial t} and ×H=εoEt\overset{\to }{\mathop{\nabla }}\,\times \overset{\to }{\mathop{H}}\,={{\varepsilon }_{o}}\dfrac{\partial \overset{\to }{\mathop{E}}\,}{\partial t} respectively:

k×E=μoωH k×H=εoωE  \overset{\to }{\mathop{k}}\,\times \overset{\to }{\mathop{E}}\,={{\mu }_{o}}\omega \overset{\to }{\mathop{H}}\, \\\ \overset{\to }{\mathop{k}}\,\times \overset{\to }{\mathop{H}}\,=-{{\varepsilon }_{o}}\omega \overset{\to }{\mathop{E}}\, \\\

Since E\overset{\to }{\mathop{E}}\, is normal to k\overset{\to }{\mathop{k}}\,, in terms of magnitude,

 kE=μoωH εoE=μoH !![!! k2=εoμoω2]  E=μoεoH  \text{ }kE={{\mu }_{o}}\omega H \\\ \sqrt{{{\varepsilon }_{o}}}E=\sqrt{{{\mu }_{o}}}H\text{ }\\!\\![\\!\\!\text{ }{{k}^{2}}={{\varepsilon }_{o}}{{\mu }_{o}}{{\omega }^{2}}] \\\ \text{ }E=\sqrt{\dfrac{{{\mu }_{o}}}{{{\varepsilon }_{o}}}}H \\\

Therefore, option C is the correct relation between E and H.

Additional information:
E\overset{\to }{\mathop{E}}\, and H\overset{\to }{\mathop{H}}\, are both perpendicular to the direction of propagation vector k\overset{\to }{\mathop{k}}\,.
This implies that electromagnetic waves are transverse in nature.
k×E=μoωH\overset{\to }{\mathop{k}}\,\times \overset{\to }{\mathop{E}}\,={{\mu }_{o}}\omega \overset{\to }{\mathop{H}}\, implies that H\overset{\to }{\mathop{H}}\, is perpendicular to both k\overset{\to }{\mathop{k}}\, and E\overset{\to }{\mathop{E}}\,.
k×H=εoωE\overset{\to }{\mathop{k}}\,\times \overset{\to }{\mathop{H}}\,=-{{\varepsilon }_{o}}\omega \overset{\to }{\mathop{E}}\, implies that E\overset{\to }{\mathop{E}}\, is perpendicular to both k\overset{\to }{\mathop{k}}\, and H\overset{\to }{\mathop{H}}\,.
Thus, the field E\overset{\to }{\mathop{E}}\, and H\overset{\to }{\mathop{H}}\, are mutually perpendicular and also they are perpendicular to the direction of propagation vector k\overset{\to }{\mathop{k}}\,.

The velocity of propagation of electromagnetic waves is equal to the speed of light in free space. This indicates that the light is an electromagnetic wave.

Note: The relation obtained between E\overset{\to }{\mathop{E}}\, and H\overset{\to }{\mathop{H}}\, is only true for plane electromagnetic waves in free space.