Solveeit Logo

Question

Question: The regression coefficient of y on x is \(\frac{2}{3}\) and of x on y is \(\frac{4}{3}\). If the acu...

The regression coefficient of y on x is 23\frac{2}{3} and of x on y is 43\frac{4}{3}. If the acute angle between the regression line is θ\theta, then tanθ=\tan\theta =

A

118\frac{1}{18}

B

19\frac{1}{9}

C

29\frac{2}{9}

D

None of these

Answer

118\frac{1}{18}

Explanation

Solution

byx=23,bxy=43b_{yx} = \frac{2}{3},b_{xy} = \frac{4}{3}. Therefore, tanθ=bxy1byx1+bxybyx\tan\theta = \left| \frac{b_{xy} - \frac{1}{b_{yx}}}{1 + \frac{b_{xy}}{b_{yx}}} \right| =

43321+4/32/3=118\left| \frac{\frac{4}{3} - \frac{3}{2}}{1 + \frac{4/3}{2/3}} \right| = \frac{1}{18}.