Solveeit Logo

Question

Physics Question on Optics

The refractive index of prism is µ = √3 and the ratio of the angle of minimum deviation to the angle of prism is one. The value of angle of prism is ______o.

Answer

For δmin\delta_\text{min}:

prism

i=eandr1=r2=A2i = e \quad \text{and} \quad r_1 = r_2 = \frac{A}{2}

δmin=2iA\delta_\text{min} = 2i - A

Given, δminA=1\frac{\delta_\text{min}}{A} = 1:

2iAA=1\frac{2i - A}{A} = 1

Simplifying:

2iA=A    2i=2A    i=A2i - A = A \implies 2i = 2A \implies i = A

Using Snell's law:

1sini=μsinr    sini=μsin(A2)1 \cdot \sin i = \mu \cdot \sin r \implies \sin i = \mu \cdot \sin \left(\frac{A}{2}\right)

Substituting i=Ai = A:

sinA=μsin(A2)\sin A = \mu \cdot \sin \left(\frac{A}{2}\right)

Expanding sinA\sin A:

2sinA2cosA2=3sinA22 \sin \frac{A}{2} \cos \frac{A}{2} = \sqrt{3} \cdot \sin \frac{A}{2}

Dividing by sinA2\sin \frac{A}{2}:

2cosA2=3    cosA2=322 \cos \frac{A}{2} = \sqrt{3} \implies \cos \frac{A}{2} = \frac{\sqrt{3}}{2}

A2=30    A=60\frac{A}{2} = 30^\circ \implies A = 60^\circ

Explanation

Solution

For δmin\delta_\text{min}:

prism

i=eandr1=r2=A2i = e \quad \text{and} \quad r_1 = r_2 = \frac{A}{2}

δmin=2iA\delta_\text{min} = 2i - A

Given, δminA=1\frac{\delta_\text{min}}{A} = 1:

2iAA=1\frac{2i - A}{A} = 1

Simplifying:

2iA=A    2i=2A    i=A2i - A = A \implies 2i = 2A \implies i = A

Using Snell's law:

1sini=μsinr    sini=μsin(A2)1 \cdot \sin i = \mu \cdot \sin r \implies \sin i = \mu \cdot \sin \left(\frac{A}{2}\right)

Substituting i=Ai = A:

sinA=μsin(A2)\sin A = \mu \cdot \sin \left(\frac{A}{2}\right)

Expanding sinA\sin A:

2sinA2cosA2=3sinA22 \sin \frac{A}{2} \cos \frac{A}{2} = \sqrt{3} \cdot \sin \frac{A}{2}

Dividing by sinA2\sin \frac{A}{2}:

2cosA2=3    cosA2=322 \cos \frac{A}{2} = \sqrt{3} \implies \cos \frac{A}{2} = \frac{\sqrt{3}}{2}

A2=30    A=60\frac{A}{2} = 30^\circ \implies A = 60^\circ