Solveeit Logo

Question

Physics Question on Refraction of Light

The refractive index for a prism is given as μ=cotA2\mu = \cot \frac{A}{2}. Then, angle of minimum deviation in terms of angle of prism is

A

90A90^{\circ} - A

B

2A2\,A

C

180A180^{\circ} - A

D

1802A180^{\circ} - 2A

Answer

1802A180^{\circ} - 2A

Explanation

Solution

Using prism formula, μ=sin(A+δm2)sin(A2)\mu = \frac{\sin \left(\frac{A + \delta_{m}}{2}\right)}{\sin \left(\frac{A}{2}\right)} ......(i) where, A = angle of prism δm\delta_m = angle of minimum deviation Given, μ=cot(A2)=cos(A2)sin(A2)\mu = \cot\left(\frac{A}{2}\right) = \frac{\cos\left(\frac{A}{2}\right)}{\sin \left(\frac{A}{2}\right)} So, from E (i) cos(A2)sin(A2)=sin(A+δm2)sin(A2)\frac{\cos\left(\frac{A}{2}\right) }{\sin \left(\frac{A}{2}\right)} = \frac{\sin \left(\frac{A+\delta _{m}}{2}\right)}{\sin\left(\frac{A}{2}\right) } sin(π2A2)=sin(A2+δm2)\Rightarrow \sin\left(\frac{\pi}{2} - \frac{A}{2}\right) =\sin\left(\frac{A}{2} + \frac{\delta_{m}}{2}\right) δm=π2A=1802A\Rightarrow\delta_{m} = \pi - 2A = 180^{\circ} - 2A