Solveeit Logo

Question

Physics Question on Refraction of Light

The refracting angle of a prism is A and refractive index is cot(A/2)\cot(A/2). The angle of minimum deviation is

A

(180??- A)

B

(180??- 2A)

C

(90??- A)

D

(90??- 2A)

Answer

(180??- 2A)

Explanation

Solution

Here, u=cotA2u = \cot \frac{A}{2} According to prism formula μ=sin(A+δm2)sin(A2)cotA2=sin(A+δm2)sin(A2)\mu=\frac{\sin\left(\frac{A +\delta_{m}}{2}\right)}{\sin\left(\frac{A}{2}\right)} \:\:\: \therefore \:\: \cot \frac{A}{2} =\frac{\sin\left(\frac{A+\delta_{m}}{2}\right)}{\sin\left(\frac{A}{2}\right)} or cos(A2)sin(A2)=sin(A+δm2)sin(A2)\frac{\cos\left(\frac{A}{2}\right)}{\sin\left(\frac{A}{2}\right)}=\frac{\sin\left(\frac{A+\delta_{m}}{2}\right)}{\sin\left(\frac{A}{2}\right)} or cos(A2)=sin(A+δm2)\cos\left(\frac{A}{2}\right) = \sin\left(\frac{A+\delta_{m}}{2}\right) or sin(90A2)=sin(A+δm2)\sin \left(90^\circ -\frac{A}{2}\right) = \sin\left(\frac{A+\delta_{m}}{2}\right) or 90A2=A+δm290^\circ - \frac{A}{2} =\frac{A+\delta_{m}}{2} or 180=A=A+δm180^\circ = A = A +\delta_{m} or δm=1802A\delta_{m} = 180^\circ - 2A