Solveeit Logo

Question

Question: The reflection of the point (4, –13) in the line \(5x + y + 6 = 0\) is...

The reflection of the point (4, –13) in the line 5x+y+6=05x + y + 6 = 0 is

A

(–1, –14)

B

(3, 4)

C

(1, 2)

D

(–4, 13)

Answer

(–1, –14)

Explanation

Solution

Let Q(a,b)Q(a,b) be the reflection of P(4,13)P(4, - 13) in the line

5x+y+6=05x + y + 6 = 0. Then the point R(a+42,b132)R\left( \frac{a + 4}{2},\frac{b - 13}{2} \right) lies on

5x+y+6=05x + y + 6 = 0 .

\therefore 5(a+42)+(b132)+6=05\left( \frac{a + 4}{2} \right) + \left( \frac{b - 13}{2} \right) + 6 = 05a+b+19=05a + b + 19 = 0 .....(i)

Also PQ is perpendicular to 5x+y+6=05x + y + 6 = 0. Therefore

(b+13a4)×(51)\left( \frac{b + 13}{a - 4} \right) \times \left( \frac{- 5}{1} \right)a5b69=0a - 5b - 69 = 0 .....(ii)

Solving (i) and (ii), we get a=1,b=14a = - 1,b = - 14.