Solveeit Logo

Question

Question: The rectangular components of a vector lying in the \[xy\] plane are 1 and \[p + 1\]. If coordinate ...

The rectangular components of a vector lying in the xyxy plane are 1 and p+1p + 1. If coordinate system turned by 3030^\circ, they are pp and 4 respectively the value of pp is:
A) 2
B) 4
C) 3.53.5
D) 7

Explanation

Solution

First, we will assume that the components after rotation be xx' and yy' respectively, such that we have x=xcosθ+ysinθx' = x\cos \theta + y\sin \theta and y=ycosθxsinθy' = y\cos \theta - x\sin \theta . Then we will find these values from the problem and then substitute the values in the assumed expression to find the value of pp.

Complete step by step solution:
We are given that the rectangular components of a vector lying in xyxy plane are 1 and p+1p + 1.
Let us assume that the components after rotation be xx' and yy' respectively, such that we have
x=xcosθ+ysinθx' = x\cos \theta + y\sin \theta
y=ycosθxsinθy' = y\cos \theta - x\sin \theta
Since we are given that when θ=30\theta = 30^\circ , the coordinates are pp and 4.
Finding the value of xx, yy, xx' and yy', we get
x=1x = 1
y=p+1y = p + 1
x=px' = p
y=4y' = 4
Substituting these above values xx, yy and xx' in the equation for xx', we get

p=1cos30+(p+1)sin30 p=cos30+(p+1)sin30  \Rightarrow p = 1 \cdot \cos 30^\circ + \left( {p + 1} \right)\sin 30^\circ \\\ \Rightarrow p = \cos 30^\circ + \left( {p + 1} \right)\sin 30^\circ \\\

Using the value of cos30=32\cos 30^\circ = \dfrac{{\sqrt 3 }}{2} and sin30=12\sin 30^\circ = \dfrac{1}{2} in the above equation, we get
p=32+(p+1)2\Rightarrow p = \dfrac{{\sqrt 3 }}{2} + \dfrac{{\left( {p + 1} \right)}}{2}
Substituting these above values xx, yy and yy' in the equation for yy', we get

4=(p+1)cos301sin30 4=(p+1)cos30sin30  \Rightarrow 4 = \left( {p + 1} \right)\cos 30^\circ - 1 \cdot \sin 30^\circ \\\ \Rightarrow 4 = \left( {p + 1} \right)\cos 30^\circ - \sin 30^\circ \\\

Using the value of cos30=32\cos 30^\circ = \dfrac{{\sqrt 3 }}{2} and sin30=12\sin 30^\circ = \dfrac{1}{2} in the above equation, we get
4=(p+1)3212\Rightarrow 4 = \dfrac{{\left( {p + 1} \right)\sqrt 3 }}{2} - \dfrac{1}{2}
Multiplying the above equation by 2 on both sides, we get

42=2((p+1)3212) 8=(p+1)31 8=p3+31  \Rightarrow 4 \cdot 2 = 2\left( {\dfrac{{\left( {p + 1} \right)\sqrt 3 }}{2} - \dfrac{1}{2}} \right) \\\ \Rightarrow 8 = \left( {p + 1} \right)\sqrt 3 - 1 \\\ \Rightarrow 8 = p\sqrt 3 + \sqrt 3 - 1 \\\

Adding the above equation with 1 on both sides, we get

8+1=p3+31+1 9=p3+3  \Rightarrow 8 + 1 = p\sqrt 3 + \sqrt 3 - 1 + 1 \\\ \Rightarrow 9 = p\sqrt 3 + \sqrt 3 \\\

Taking 3\sqrt 3 common from the right hand side of the above equation, we get
9=(p+1)3\Rightarrow 9 = \left( {p + 1} \right)\sqrt 3
Dividing the above equation by 3\sqrt 3 on both sides, we get

93=(p+1)33 93=p+1  \Rightarrow \dfrac{9}{{\sqrt 3 }} = \dfrac{{\left( {p + 1} \right)\sqrt 3 }}{{\sqrt 3 }} \\\ \Rightarrow \dfrac{9}{{\sqrt 3 }} = p + 1 \\\

Rationalizing the left hand side of the above equation by multiplying 3\sqrt 3 with numerator and denominator, we get

9×33×3=p+1 9×33=p+1 33=p+1  \Rightarrow \dfrac{{9 \times \sqrt 3 }}{{\sqrt 3 \times \sqrt 3 }} = p + 1 \\\ \Rightarrow \dfrac{{9 \times \sqrt 3 }}{3} = p + 1 \\\ \Rightarrow 3\sqrt 3 = p + 1 \\\

Subtracting the above equation by 1 on both sides, we get

331=p+11 331=p p=331 p=4  \Rightarrow 3\sqrt 3 - 1 = p + 1 - 1 \\\ \Rightarrow 3\sqrt 3 - 1 = p \\\ \Rightarrow p = 3\sqrt 3 - 1 \\\ \Rightarrow p = 4 \\\

Hence, option B is correct.

Note:
We need to know that rectangular components are from a vector, one for the xx–axis and the second one for the yy–axis. Students should use the values of trigonometric functions really carefully. Some angles can also be resolved along with these vectors. If AA is a vector then its xx component is AxAx and its yy component is AyAy.