Solveeit Logo

Question

Mathematics Question on graphical solution of linear inequalities in two variables

The real values of xx and yy for which the following equality hold, are respectively (x4+2xi)(3x2+iy)=(35i)+(1+2iy)(x^{4}+2xi)-(3x^{2}+iy)=(3-5i)+(1+2iy)

A

2,32, 3 or 2-2, 1/31/3

B

11, 33 or 1-1, 1/31/3

C

22, 1/31/3 or 2-2, 33

D

22, 1/31/3 or 2-2, 1/3-1/3

Answer

2,32, 3 or 2-2, 1/31/3

Explanation

Solution

The given equality can be rewritten as (x43x2)+i(2xy)\left(x^{4}-3x^{2}\right)+i\left(2x-y\right) =4+i(2y5)=4+i\left(2y-5\right) x43x2=4\Rightarrow\, x^{4}-3x^{2}=4 , 2xy=2y52x-y=2y-5 (x24)(x2+1)=0\Rightarrow\,\left(x^{2}-4\right)\left(x^{2}+1\right)=0 x=±2 \Rightarrow x=\pm\,2 (x21)\left(\because\quad x^{2}\ne-1\right) \therefore\, At x=2x=2 , y=3y=3 and at x=2x=-2 , y=1/3y=1 /3