Solveeit Logo

Question

Question: The real values of x and y for which the equation is \(\left( x+iy \right)\left( 2-3i \right)=4+i\) ...

The real values of x and y for which the equation is (x+iy)(23i)=4+i\left( x+iy \right)\left( 2-3i \right)=4+i is satisfied are:
a). x=513,y=813x=\dfrac{5}{13},y=\dfrac{8}{13}
b). x=813,y=513x=\dfrac{8}{13},y=\dfrac{5}{13}
c). x=513,y=1413x=\dfrac{5}{13},y=\dfrac{14}{13}
d). None of these

Explanation

Solution

Hint: We will first multiply both the terms on the LHS of the equation. This would give us the real part and the imaginary part as a linear term of two variables x and y. Comparing the real and imaginary parts of LHS with that of RHS, This will be two simultaneous linear equations. Solving these two equations would give us x and y values.

Complete step-by-step solution -
Let us consider the LHS.
=(x+iy)(23i)=\left( x+iy \right)\left( 2-3i \right)
Multiplying the terms we get,
LHS =(2×x)+(3i×x)+(2×iy)+(3i×iy)=\left( 2\times x \right)+\left( -3i\times x \right)+\left( 2\times iy \right)+\left( -3i\times iy \right) .
LHS =2x3xi+2yi3i2y=2x-3xi+2yi-3{{i}^{2}}y .
Since i2=1{{i}^{2}}=-1 , we get,
LHS =2x3xi+2yi3(1)y=2x-3xi+2yi-3\left( -1 \right)y .
LHS=2x3xi+2yi+3y=2x-3xi+2yi+3y
Now grouping all the real parts in one term and all the imaginary parts in the other, we get,
LHS =(2x+3y)+(3x+2y)i=\left( 2x+3y \right)+\left( -3x+2y \right)i
Now, consider RHS.
RHS=4+i=4+i .
Therefore, on comparing the LHS and RHS we get,
2x+3y=42x+3y=4 and 3x+2y=1-3x+2y=1
Let us solve these two simultaneous equation
2x+3y=4.................×3 3x+2y=1...............×2 \begin{aligned} & 2x+3y=4.................\times 3 \\\ & -3x+2y=1...............\times 2 \\\ \end{aligned}
We now get,
6x+9y=12 6x+4y=2 \begin{aligned} & 6x+9y=12 \\\ & -6x+4y=2 \\\ \end{aligned}
Adding both the equations, we get,
13y=1413y=14
Cross multiplying,
y=1413y=\dfrac{14}{13} .
Substituting this y value in 2x+3y=42x+3y=4 we get,
2x+3(1413)=4 2x+4213=4 2x=44213 2x=524213 2x=1013 x=513. \begin{aligned} & 2x+3\left( \dfrac{14}{13} \right)=4 \\\ & 2x+\dfrac{42}{13}=4 \\\ & 2x=4-\dfrac{42}{13} \\\ & 2x=\dfrac{52-42}{13} \\\ & 2x=\dfrac{10}{13} \\\ & x=\dfrac{5}{13}. \\\ \end{aligned}
Thus, x=513x=\dfrac{5}{13} and y=1413y=\dfrac{14}{13}
Thus, option (c) is correct.

Note: There is an alternate method to solve this problem.
Consider the equation.
(x+iy)(23i)=4+i\left( x+iy \right)\left( 2-3i \right)=4+i .
Cross multiplying 23i2-3i , we get,
x+iy=4+i23ix+iy=\dfrac{4+i}{2-3i} .
Multiplying and dividing by the conjugate of 23i2-3i that is 2+3i2+3i we get,
x+iy=4+i23i×2+3i2+3ix+iy=\dfrac{4+i}{2-3i}\times \dfrac{2+3i}{2+3i} .
Multiplying further,
x+iy=(4×2)+(4×3i)+(2×i)+(3i×i)(2×2)+(2×3i)+(3i×2)+(3i×3i) x+iy=8+12i+2i+3i24+6i6i9i2 \begin{aligned} & x+iy=\dfrac{\left( 4\times 2 \right)+\left( 4\times 3i \right)+\left( 2\times i \right)+\left( 3i\times i \right)}{\left( 2\times 2 \right)+\left( 2\times 3i \right)+\left( -3i\times 2 \right)+\left( -3i\times 3i \right)} \\\ & x+iy=\dfrac{8+12i+2i+3{{i}^{2}}}{4+6i-6i-9{{i}^{2}}} \\\ \end{aligned}
Now we know i2=1{{i}^{2}}=-1 .
Thus, x+iy=(83)+14i4+9 x+iy=5+14i13 x+iy=513+14i13 \begin{aligned} & x+iy=\dfrac{\left( 8-3 \right)+14i}{4+9} \\\ & x+iy=\dfrac{5+14i}{13} \\\ & x+iy=\dfrac{5}{13}+\dfrac{14i}{13} \\\ \end{aligned}
Comparing, we get to know, x=513x=\dfrac{5}{13} and y=1413y=\dfrac{14}{13} .