Solveeit Logo

Question

Question: The real values of \(\frac{(1 + i)x - 2i}{3 + i}\)and\(+ \frac{(2 - 3i)y + i}{3 - i} = i\)for which ...

The real values of (1+i)x2i3+i\frac{(1 + i)x - 2i}{3 + i}and+(23i)y+i3i=i+ \frac{(2 - 3i)y + i}{3 - i} = ifor which the equation is x=1,y=3x = - 1,y = 3 x=3,y=1x = 3,y = - 1= x=0,y=1x = 0,y = 1 is satisfied, are.

A

x=1,y=0x = 1,y = 0

B

z1z_{1}

C

z2z_{2}

D

None of these

Answer

z2z_{2}

Explanation

Solution

Equation (z)=0(z) = 0

8sinθ1+4sin2θ\frac{8\sin\theta}{1 + 4\sin^{2}\theta}

Equating real and imaginary parts, we get

sinθ=0\sin\theta = 0 ......(i)

\therefore ......(ii)

From (i) and (ii), we get θ=nπ\theta = n\pi

Aliter : n=0n = 0 .