Solveeit Logo

Question

Question: The real value of \(\theta\) for which the expression \(\frac{1 + i\cos\theta}{1 - 2i\cos\theta}\)is...

The real value of θ\theta for which the expression 1+icosθ12icosθ\frac{1 + i\cos\theta}{1 - 2i\cos\theta}is a real number, is

A

nπ+π/2n\pi + \pi/2

B

nππ/2n\pi - \pi/2

C

nπ±π/2n\pi \pm \pi/2

D

None of these

Answer

nπ±π/2n\pi \pm \pi/2

Explanation

Solution

Sol. Given that 1+icosθ12icosθ\frac{1 + i\cos\theta}{1 - 2i\cos\theta}

=(1+icosθ)(1+2icosθ)(12icosθ)(1+2icosθ)= \frac{(1 + i\cos\theta)(1 + 2i\cos\theta)}{(1 - 2i\cos\theta)(1 + 2i\cos\theta)}

=[(12cos2θ)(1+4cos2θ)]+i[3cosθ1+4cos2θ]= \left\lbrack \frac{(1 - 2\cos^{2}\theta)}{(1 + 4\cos^{2}\theta)} \right\rbrack + i\left\lbrack \frac{3\cos\theta}{1 + 4\cos^{2}\theta} \right\rbrack

Since Im(z)=0{Im}(z) = 0, then 3cosθ=03\cos\theta = 0θ=nπ±π/2.\theta = n\pi \pm \pi/2.