Solveeit Logo

Question

Question: The real part of tan (a + ib) is –...

The real part of tan (a + ib) is –

A

2sin2α2cos2α+e2β+e2β\frac{2\sin 2\alpha}{2\cos 2\alpha + e^{2\beta} + e^{- 2\beta}}

B

sin2α2cosα+e2β+e2β\frac{\sin 2\alpha}{2\cos\alpha + e^{2\beta} + e^{- 2\beta}}

C

e2β+e2βsin2α\frac{e^{2\beta} + e^{- 2\beta}}{\sin 2\alpha}

D

None of these

Answer

2sin2α2cos2α+e2β+e2β\frac{2\sin 2\alpha}{2\cos 2\alpha + e^{2\beta} + e^{- 2\beta}}

Explanation

Solution

Sol. tan (a + bi)

= sin(α+βi)cos(α+βi)\frac{\sin(\alpha + \beta i)}{\cos(\alpha + \beta i)} = 2sin(α+βi).cos(αβi)2cos(α+βi).cos(αβi)\frac{2\sin(\alpha + \beta i).\cos(\alpha - \beta i)}{2\cos(\alpha + \beta i).\cos(\alpha - \beta i)}

= sin2α+sin(2iβ)cos2α+cos(2iβ)\frac{\sin 2\alpha + \sin(2i\beta)}{\cos 2\alpha + \cos(2i\beta)}= sin2α+ie2βe2β2cos2α+e2β+e2β2\frac{\sin 2\alpha + i\frac{e^{2\beta} - e^{- 2\beta}}{2}}{\cos 2\alpha + \frac{e^{2\beta} + e^{- 2\beta}}{2}}

=2sin2α+i(e2βe2β)2cos2α+e2β+e2β\frac{2\sin 2\alpha + i(e^{2\beta} - e^{- 2\beta})}{2\cos 2\alpha + e^{2\beta} + e^{- 2\beta}}

\ Real part of tan (a + bi)

=2sin2α2cos2α+e2β+e2β\frac{2\sin 2\alpha}{2\cos 2\alpha + e^{2\beta} + e^{- 2\beta}}.