Solveeit Logo

Question

Mathematics Question on Exponential and Logarithmic Functions

The real part of loglogilog \,log\, i is

A

π2 \frac{\pi}{2}

B

logπ2\log \frac{\pi}{2}

C

00

D

noneofthesenone\, of\, these

Answer

logπ2\log \frac{\pi}{2}

Explanation

Solution

log(logi)=log(logeiπ/2)\log\left(\log i\right) = \log \left(\log e^{i\pi/2}\right) =log(iπ2)=logi+log= \log \left(i \frac{\pi}{2}\right) = \log i + \log =logπ2+logeiπ/2=logπ2+iπ2= \log \frac{\pi}{2} +\log e^{i\pi /2} = \log \frac{\pi}{2} + \frac{i\pi}{2} Hence, real part is logπ2\log \frac{\pi}{2}.