Solveeit Logo

Question

Mathematics Question on complex numbers

The real part of (1cosθ+isinθ)1( {1 - cos \, \theta + i \, sin \, \theta} )^{-1} is

A

12\frac{1}{2}

B

11+cosθ\frac{1}{1 + \cos \, \theta}

C

tanθ2\tan \frac{\theta}{2}

D

cotθ2\cot \frac{\theta}{2}

Answer

12\frac{1}{2}

Explanation

Solution

We have, (1cosθ+isinθ)1(1- \cos \,\theta + i \,\sin \,\theta)^{-1} =11cosθ+isinθ=\frac{1}{1-\cos\, \theta+i\, \sin\, \theta} =1cosθisinθ(1cosθ)2+sin2θ=\frac{1-\cos\, \theta-i \,\sin \,\theta}{(1-\cos \,\theta)^{2}+\sin ^{2} \theta} =1cosθisinθ12cosθ+cos2θ+sin2θ=\frac{1-\cos\, \theta-i \,\sin\, \theta}{1-2 \,\cos \,\theta+\cos ^{2} \theta+\sin ^{2} \theta} =1cosθisinθ22cosθ=\frac{1-\cos\, \theta-i \\\,sin\, \theta}{2-2 \,\cos \,\theta} =1cosθ2(1cosθ)isinθ2(1cosθ)=\frac{1-\cos\, \theta}{2(1-\cos \,\theta)}-\frac{i\, \sin\, \theta}{2(1-\cos \,\theta)} =12isinθ2(1cosθ)=\frac{1}{2}-\frac{i \,\sin\, \theta}{2(1-\cos\, \theta)} Hence, the real part is 12\frac{1}{2}.