Solveeit Logo

Question

Question: The real part of \((1 - \cos\theta + 2i\sin\theta)^{- 1}\) is...

The real part of (1cosθ+2isinθ)1(1 - \cos\theta + 2i\sin\theta)^{- 1} is

A

13+5cosθ\frac{1}{3 + 5\cos\theta}

B

153cosθ\frac{1}{5 - 3\cos\theta}

C

135cosθ\frac{1}{3 - 5\cos\theta}

D

15+3cosθ\frac{1}{5 + 3\cos\theta}

Answer

135cosθ\frac{1}{3 - 5\cos\theta}

Explanation

Solution

Sol.{(1cosθ)+i.2sinθ}1={2sin2θ2+i.4sinθ2cosθ2}1\left\{ (1 - \cos\theta) + i.2\sin\theta \right\}^{- 1} = \left\{ 2\sin^{2}\frac{\theta}{2} + i.4\sin\frac{\theta}{2}\cos\frac{\theta}{2} \right\}^{- 1}

= (2sinθ2)1{sinθ2+i.2cosθ2}1\left( 2\sin\frac{\theta}{2} \right)^{- 1}\left\{ \sin\frac{\theta}{2} + i.2\cos\frac{\theta}{2} \right\}^{- 1}

=(2sinθ2)1.1sinθ2+i.2cosθ2×sinθ2i.2cosθ2sinθ2i.2cosθ2=sinθ2i.2cosθ22sinθ2(sin2θ2+4cos2θ2)= \left( 2\sin\frac{\theta}{2} \right)^{- 1}.\frac{1}{\sin\frac{\theta}{2} + i.2\cos\frac{\theta}{2}} \times \frac{\sin\frac{\theta}{2} - i.2\cos\frac{\theta}{2}}{\sin\frac{\theta}{2} - i.2\cos\frac{\theta}{2}} = \frac{\sin\frac{\theta}{2} - i.2\cos\frac{\theta}{2}}{2\sin\frac{\theta}{2}\left( \sin^{2}\frac{\theta}{2} + 4\cos^{2}{}\frac{\theta}{2} \right)}

Hence, real part

=sinθ22sinθ2(1+3cos2θ2)=12(1+3cos2θ2)=15+3cosθ= \frac{\sin\frac{\theta}{2}}{2\sin\frac{\theta}{2}\left( 1 + 3\cos^{2}\frac{\theta}{2} \right)} = \frac{1}{2\left( 1 + 3\cos^{2}\frac{\theta}{2} \right)} = \frac{1}{5 + 3\cos\theta}.