Solveeit Logo

Question

Question: The real numbers x<sub>1</sub>, x<sub>2</sub>, x<sub>3</sub> satisfying the equation x<sup>3</sup> –...

The real numbers x1, x2, x3 satisfying the equation x3 – x2 + βx + γ = 0 are in A.P., then the intervals in which β and γ lie, are

A

(,13]\left( - \infty,\frac{1}{3} \right\rbrack, [127,)\left\lbrack - \frac{1}{27},\infty \right)

B

(127,)\left( - \frac{1}{27},\infty \right), (,13)\left( - \infty,\frac{1}{3} \right)

C

(0, ∞), (–∞, 0)

D

None of these

Answer

(,13]\left( - \infty,\frac{1}{3} \right\rbrack, [127,)\left\lbrack - \frac{1}{27},\infty \right)

Explanation

Solution

Taking x1 , x2, x3 as a – d, a and a + d, we have

a – d + a + a + d = 1 ... (i)

(a – d)a + a(a + d) + (a – d) (a + d) = β ... (ii)

(a – d) a (a + d) = –γ ... (iii)

From equation (i), a = 1/3 and putting a = 13\frac{1}{3}in equation (ii),

we get

3a2 – d2 = β ⇒ d2 = 13\frac{1}{3}– β

13\frac{1}{3} – β ≥ 0 ⇒ β ≤ 13\frac{1}{3}

Again from (iii), a (a2 – d2) = –γ

⇒ γ = d23\frac{d^{2}}{3}127\frac{1}{27}≥ – 127\frac{1}{27}

⇒ γ ∈ [127,)\left\lbrack - \frac{1}{27},\infty \right)