Solveeit Logo

Question

Question: The real numbers \({x_1},{x_2},{x_3}\) satisfying the equation \({x^3} - {x^2} + \beta x + \gamma = ...

The real numbers x1,x2,x3{x_1},{x_2},{x_3} satisfying the equation x3x2+βx+γ=0{x^3} - {x^2} + \beta x + \gamma = 0 are in AP. Find the interval in which β and γ\beta {\text{ and }}\gamma lie?
A. β(,13] and γ[127,)\beta \in \left( { - \infty ,\dfrac{1}{3}} \right]{\text{ and }}\gamma \in \left[ { - \dfrac{1}{{27}},\infty } \right)
B. β(,13)and γ[127,)\beta \in \left( { - \infty ,\dfrac{1}{3}} \right){\text{and }}\gamma \in \left[ { - \dfrac{1}{{27}},\infty } \right)
C. β(,13]and γ(127,)\beta \in \left( { - \infty , - \dfrac{1}{3}} \right]{\text{and }}\gamma \in \left( { - \dfrac{1}{{27}},\infty } \right)
D. none of these.

Explanation

Solution

Here we can proceed by letting the three roots so that they are in AP. Now we can easily form the equations from the given equations of the sum of the roots, sum of roots taken two at a time and also for the product of the roots. If we have the cubic equation ax3+bx2+cx+d=0a{x^3} + b{x^2} + cx + d = 0
Sum of roots=ba = - \dfrac{b}{a}
Product of roots=da = - \dfrac{d}{a}
Sum when taken two at a time=ca = \dfrac{c}{a}

Complete step-by-step answer:
Here we are given that x1,x2,x3{x_1},{x_2},{x_3} satisfying the equation x3x2+βx+γ=0{x^3} - {x^2} + \beta x + \gamma = 0 are its roots and are in AP. So we know that the progression in which there is a common difference in each consecutive term is known as AP. So here if these three are in AP, we can let:
x1=ad,x2=a,x3=a+d{x_1} = a - d,{x_2} = a,{x_3} = a + d
If we have the cubic equation of the form ax3+bx2+cx+d=0a{x^3} + b{x^2} + cx + d = 0 then we can say:
Sum of roots=ba = - \dfrac{b}{a}
So we can write it as:
ad+a+a+d=(1)1=1 3a=1 a=13  \Rightarrow a - d + a + a + d = \dfrac{{ - ( - 1)}}{1} = 1 \\\ \Rightarrow 3a = 1 \\\ \Rightarrow a = \dfrac{1}{3} \\\
So we get three roots as 13d,13,13+d\dfrac{1}{3} - d,\dfrac{1}{3},\dfrac{1}{3} + d
We also know that:
Sum of roots when taken two at a time=ca = \dfrac{c}{a}
x1x2+x2x3+x3x1=ca{x_1}{x_2} + {x_2}{x_3} + {x_3}{x_1} = \dfrac{c}{a}
13(13d)+13(13+d)+(13d)(13+d)=β 19d3+19+d3+19d2=β 39d2=β 13d2=β  \Rightarrow \dfrac{1}{3}\left( {\dfrac{1}{3} - d} \right) + \dfrac{1}{3}\left( {\dfrac{1}{3} + d} \right) + \left( {\dfrac{1}{3} - d} \right)\left( {\dfrac{1}{3} + d} \right) = \beta \\\ \Rightarrow \dfrac{1}{9} - \dfrac{d}{3} + \dfrac{1}{9} + \dfrac{d}{3} + \dfrac{1}{9} - {d^2} = \beta \\\ \Rightarrow \dfrac{3}{9} - {d^2} = \beta \\\ \Rightarrow \dfrac{1}{3} - {d^2} = \beta \\\
We also know that:
The value of d20{d^2} \geqslant 0 as a square of any number is always non-negative.
So we can say that:
\Rightarrow 13d2=β\dfrac{1}{3} - {d^2} = \beta
As d20{d^2} \geqslant 0
\Rightarrow 13d213\dfrac{1}{3} - {d^2} \leqslant \dfrac{1}{3}
So β13\beta \leqslant \dfrac{1}{3} (1) - - - - - (1)
Now we can take the product of the roots:
(13d)13(13+d)=(19d3)(13+d)\left( {\dfrac{1}{3} - d} \right)\dfrac{1}{3}\left( {\dfrac{1}{3} + d} \right) = \left( {\dfrac{1}{9} - \dfrac{d}{3}} \right)\left( {\dfrac{1}{3} + d} \right) =γ1 = \dfrac{{ - \gamma }}{1}
Now simplifying it we will get:
127+d9d9d23=γ\dfrac{1}{{27}} + \dfrac{d}{9} - \dfrac{d}{9} - \dfrac{{{d^2}}}{3} = - \gamma
127d23=γ γ=13(d219)  \Rightarrow \dfrac{1}{{27}} - \dfrac{{{d^2}}}{3} = - \gamma \\\ \Rightarrow \gamma = \dfrac{1}{3}\left( {{d^2} - \dfrac{1}{9}} \right) \\\
Also we know that d20{d^2} \geqslant 0
So we can say that:
γ=13(d219)13(19) γ127(2)  \Rightarrow \gamma = \dfrac{1}{3}\left( {{d^2} - \dfrac{1}{9}} \right) \geqslant \Rightarrow\dfrac{1}{3}\left( { - \dfrac{1}{9}} \right) \\\ \Rightarrow \gamma \geqslant - \dfrac{1}{{27}} - - - - - - (2) \\\
From equation (1) and (2) we get that:
β(,13] and γ[127,)\beta \in \left( { - \infty ,\dfrac{1}{3}} \right]{\text{ and }}\gamma \in \left[ { - \dfrac{1}{{27}},\infty } \right)
Hence A is the correct option.

Note: Here the student must keep in mind all the formulas that are used in relation to the cubic equation as given above because without them, the problem cannot be solved easily. Hence one must remember that when we are given the cubic equation of the form ax3+bx2+cx+d=0a{x^3} + b{x^2} + cx + d = 0
Sum of roots=ba = - \dfrac{b}{a}
Product of roots=da = - \dfrac{d}{a}
Sum when taken two at a time=ca = \dfrac{c}{a}