Solveeit Logo

Question

Question: The real number \[x\] when added to its inverse gives the maximum value of sum at \[x\] equal to? ...

The real number xx when added to its inverse gives the maximum value of sum at xx equal to?
a) 11
b) 1 - 1
c) 22
d) 2 - 2

Explanation

Solution

In order to find the maximum value of the sum of xx and its inverse, first we need to determine the inverse of xx and then we will use maxima minima properties. Letting the sum to be equal to yy, we need to first evaluate dydx=0\dfrac{{dy}}{{dx}} = 0 and obtain the critical values of xx. After that, we need to find d2ydx2\dfrac{{{d^2}y}}{{d{x^2}}} and check for what values of xx, the value of d2ydx2\dfrac{{{d^2}y}}{{d{x^2}}} is less than 00. The values of xx for which d2ydx2<0\dfrac{{{d^2}y}}{{d{x^2}}} < 0 will give us the maximum value of yy.

Complete step-by-step answer:
We first find the inverse of the real number xx.
A number bb is said to be the inverse of number aa if ab=1ab = 1.
Let the inverse of xx be equal to zz.
According to the definition, xz=1xz = 1
Reshuffling the terms, we get
z=1x\Rightarrow z = \dfrac{1}{x}
Hence, the inverse of xx is 1x\dfrac{1}{x}.
Letting the sum of xx and its inverse to be equal to yy, we get
y=x+1x\Rightarrow y = x + \dfrac{1}{x}
Now, we need to evaluate dydx=0\dfrac{{dy}}{{dx}} = 0.
Let us first find dydx\dfrac{{dy}}{{dx}}
dydx=ddx(x+1x)\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}\left( {x + \dfrac{1}{x}} \right)
Using ddx(f(x)+g(x))=ddx(f(x))+ddx(g(x))\dfrac{d}{{dx}}\left( {f\left( x \right) + g\left( x \right)} \right) = \dfrac{d}{{dx}}\left( {f\left( x \right)} \right) + \dfrac{d}{{dx}}\left( {g\left( x \right)} \right), we get
dydx=dxdx+ddx(1x)\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{dx}}{{dx}} + \dfrac{d}{{dx}}\left( {\dfrac{1}{x}} \right)
Writing 1x=x1\dfrac{1}{x} = {x^{ - 1}}, we get
dydx=dxdx+ddx(x1)\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{dx}}{{dx}} + \dfrac{d}{{dx}}\left( {{x^{ - 1}}} \right)
Now, using ddx(xn)=nxn1\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}}, we get
dydx=1(x11)+(1)x11\Rightarrow \dfrac{{dy}}{{dx}} = 1\left( {{x^{1 - 1}}} \right) + \left( { - 1} \right){x^{ - 1 - 1}}
Solving the powers of xx, we get
dydx=x0x2\Rightarrow \dfrac{{dy}}{{dx}} = {x^0} - {x^{ - 2}}
We know, x0=1{x^0} = 1 and writing x2=1x2{x^{ - 2}} = \dfrac{1}{{{x^2}}}, we get
dydx=11x2(1)\Rightarrow \dfrac{{dy}}{{dx}} = 1 - \dfrac{1}{{{x^2}}} - - - - - - (1)
Now, we need to evaluate dydx=0\dfrac{{dy}}{{dx}} = 0
Hence, calculating this, we get
dydx=11x2=0\Rightarrow \dfrac{{dy}}{{dx}} = 1 - \dfrac{1}{{{x^2}}} = 0
11x2=0\Rightarrow 1 - \dfrac{1}{{{x^2}}} = 0
Reshuffling the terms, we get
1=1x2\Rightarrow 1 = \dfrac{1}{{{x^2}}}
Now, By cross multiplying ,we get
x2=1\Rightarrow {x^2} = 1
Hence, we get
x=±1\Rightarrow x = \pm 1
So, solving dydx=0\dfrac{{dy}}{{dx}} = 0, we get x=1x = 1 or x=1x = - 1.
Now, we need to check whether d2ydx2>0\dfrac{{{d^2}y}}{{d{x^2}}} > 0 or d2ydx2<0\dfrac{{{d^2}y}}{{d{x^2}}} < 0 at x=1x = 1 and x=1x = - 1
So, we now, calculate d2ydx2\dfrac{{{d^2}y}}{{d{x^2}}}
We know, d2ydx2=ddx(dydx)\dfrac{{{d^2}y}}{{d{x^2}}} = \dfrac{d}{{dx}}\left( {\dfrac{{dy}}{{dx}}} \right). Using (1), we get
d2ydx2=ddx(dydx)=ddx(11x2)\Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = \dfrac{d}{{dx}}\left( {\dfrac{{dy}}{{dx}}} \right) = \dfrac{d}{{dx}}\left( {1 - \dfrac{1}{{{x^2}}}} \right)
Writing 1x2=x2\dfrac{1}{{{x^2}}} = {x^{ - 2}}, we get
d2ydx2=ddx(1x2)\Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = \dfrac{d}{{dx}}\left( {1 - {x^{ - 2}}} \right)
Now, using ddx(f(x)g(x))=ddx(f(x))ddx(g(x))\dfrac{d}{{dx}}\left( {f\left( x \right) - g\left( x \right)} \right) = \dfrac{d}{{dx}}\left( {f\left( x \right)} \right) - \dfrac{d}{{dx}}\left( {g\left( x \right)} \right), ddx(xn)=nxn1\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}} and ddx(c)=0\dfrac{d}{{dx}}\left( c \right) = 0, where cc is a constant term, we get
d2ydx2=ddx(1)ddx(x2)\Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = \dfrac{d}{{dx}}\left( 1 \right) - \dfrac{d}{{dx}}\left( {{x^{ - 2}}} \right)
Here, 11 is a constant term. So, we have
d2ydx2=0(2)x21\Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = 0 - \left( { - 2} \right){x^{ - 2 - 1}}
Solving the powers of xx, we get
d2ydx2=0(2)x3\Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = 0 - \left( { - 2} \right){x^{ - 3}}
Now, solving the terms, we get
d2ydx2=2x3\Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = 2{x^{ - 3}}
Now, writing x3=1x3{x^{ - 3}} = \dfrac{1}{{{x^3}}}, we get
d2ydx2=2x3\Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = \dfrac{2}{{{x^3}}}
Hence, we get d2ydx2=2x3\dfrac{{{d^2}y}}{{d{x^2}}} = \dfrac{2}{{{x^3}}}
Now, we need to check the value of d2ydx2\dfrac{{{d^2}y}}{{d{x^2}}} at x=1x = 1 and x=1x = - 1
First checking d2ydx2\dfrac{{{d^2}y}}{{d{x^2}}} at x=1x = 1
d2ydx2x=1=2(1)3\Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}}{|_{x = 1}} = \dfrac{2}{{{{\left( 1 \right)}^3}}}
d2ydx2x=1=21=2\Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}}{|_{x = 1}} = \dfrac{2}{1} = 2
Hence, we get
d2ydx2x=1=2>0\Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}}{|_{x = 1}} = 2 > 0
So, value of d2ydx2\dfrac{{{d^2}y}}{{d{x^2}}} at x=1x = 1 is greater than zero.
Now, checking d2ydx2\dfrac{{{d^2}y}}{{d{x^2}}} at x=1x = - 1, we get
d2ydx2x=1=2(1)3\Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}}{|_{x = - 1}} = \dfrac{2}{{{{\left( { - 1} \right)}^3}}}
Now, solving the denominator, we get
d2ydx2x=1=21\Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}}{|_{x = - 1}} = \dfrac{2}{{ - 1}}
d2ydx2x=1=2<0\Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}}{|_{x = - 1}} = - 2 < 0
Hence, we get d2ydx2\dfrac{{{d^2}y}}{{d{x^2}}} at x=1x = - 1 is less than zero.
We know, aa is said to be the maximum value of yy if d2ydx2<0\dfrac{{{d^2}y}}{{d{x^2}}} < 0 at x=ax = a.
Hence, we get the maximum value of yy at x=1x = - 1.
So, the maximum value of the sum of a real number xx and its inverse is at x=1x = - 1.

So, the correct answer is “Option A”.

Note: Here, to solve this question we have used a second derivative test of maxima and minima. We can also solve this question using the first derivative test of maxima and minima. For that, we need to check whether the sign of the first derivative of the function changes from negative to positive or positive to negative when we take one value smaller than the critical value and one value greater than the critical value. If it changes from positive to negative, then the critical point is the point of maxima and if it changes from negative to positive, then the critical point is the point of minima.