Solveeit Logo

Question

Question: The real and imaginary parts of \(\sqrt{i}\) are, where \(i=\sqrt{-1}\) [a] \(1-\dfrac{1}{\sqrt{2}...

The real and imaginary parts of i\sqrt{i} are, where i=1i=\sqrt{-1}
[a] 112,121-\dfrac{1}{\sqrt{2}},\dfrac{-1}{\sqrt{2}} respectively
[b] 112,121-\dfrac{1}{\sqrt{2}},\dfrac{1}{\sqrt{2}} respectively
[c] 1+12,121+\dfrac{1}{\sqrt{2}},\dfrac{1}{\sqrt{2}} respectively
[d] 1+12,121+\dfrac{1}{\sqrt{2}},\dfrac{-1}{\sqrt{2}} respectively

Explanation

Solution

Hint: Assume that i=a+ib\sqrt{i}=a+ib. Square both sides and use the fact that (a+b)2=a2+2ab+b2{{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}. Compare the real and imaginary parts and hence form two equations in two variables a and b. Solve the equations and hence find the value of a and b. Hence find the value of the real and imaginary part of 1+i1+\sqrt{i}. Alternatively, use the fact that i=eiπ2=ei5π2i={{e}^{i\dfrac{\pi }{2}}}={{e}^{i\dfrac{5\pi }{2}}}. Use the fact that eiθ=cosθ+isinθ{{e}^{i\theta }}=\cos \theta +i\sin \theta and hence find the real and imaginary parts of 1+i1+\sqrt{i}.

Complete step-by-step solution
Let i=a+ib,a,bR\sqrt{i}=a+ib,a,b\in \mathbb{R}
Squaring both sides, we get
i=(a+ib)2i={{\left( a+ib \right)}^{2}}
We know that (a+b)2=a2+2ab+b2{{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}
Hence, we have
i=a2+(ib)2+2a(ib)i={{a}^{2}}+{{\left( ib \right)}^{2}}+2a\left( ib \right)
We know that i2=1{{i}^{2}}=-1. Hence, we get
i=a2b2+i2abi={{a}^{2}}-{{b}^{2}}+i2ab
Comparing real parts, we get
a2b2=0 a=±b (i) \begin{aligned} & {{a}^{2}}-{{b}^{2}}=0 \\\ & \Rightarrow a=\pm b\text{ }\left( i \right) \\\ \end{aligned}
Comparing imaginary parts, we get
2ab=12ab=1
Substituting the value of a from equation (i), we get
±2b2=1 b2=±12 \begin{aligned} & \pm 2{{b}^{2}}=1 \\\ & \Rightarrow {{b}^{2}}=\pm \dfrac{1}{2} \\\ \end{aligned}
Since bRb\in \mathbb{R}, we have b20{{b}^{2}}\ge 0
Hence we have
b2=12{{b}^{2}}=-\dfrac{1}{2} is rejected.
Hence, we have
b2=12 b=±12 \begin{aligned} & {{b}^{2}}=\dfrac{1}{2} \\\ & \Rightarrow b=\pm \dfrac{1}{\sqrt{2}} \\\ \end{aligned}
Hence, from equation (i), we get
a=±12a=\pm \dfrac{1}{\sqrt{2}}
Hence, we have
i=±12±i12=±12(1+i)\sqrt{i}=\pm \dfrac{1}{\sqrt{2}}\pm i\dfrac{1}{\sqrt{2}}=\pm \dfrac{1}{\sqrt{2}}\left( 1+i \right)
Hence, we have
1+i=1±12+i(±12)1+\sqrt{i}=1\pm \dfrac{1}{\sqrt{2}}+i\left( \pm \dfrac{1}{\sqrt{2}} \right)
Hence, we have Re(1+i)=1+12,Im(1+i)=12 or Re(1+i)=112,Im(1+i)=12\operatorname{Re}\left( 1+\sqrt{i} \right)=1+\dfrac{1}{\sqrt{2}},\operatorname{Im}\left( 1+\sqrt{i} \right)=\dfrac{1}{\sqrt{2}}\text{ or }\operatorname{Re}\left( 1+\sqrt{i} \right)=1-\dfrac{1}{\sqrt{2}},\operatorname{Im}\left( 1+\sqrt{i} \right)=-\dfrac{1}{\sqrt{2}}
Hence options [a] and [c] are correct.

Note: Alternative solution: Using Euler’s identity:
We know that eiθ=cosθ+isinθ{{e}^{i\theta }}=\cos \theta +i\sin \theta
Hence, we have
eiπ2=cosπ2+isinπ2=i ei5π2=cos5π2+isin5π2=i \begin{aligned} & {{e}^{i\dfrac{\pi }{2}}}=\cos \dfrac{\pi }{2}+i\sin \dfrac{\pi }{2}=i \\\ & {{e}^{i\dfrac{5\pi }{2}}}=\cos \dfrac{5\pi }{2}+i\sin \dfrac{5\pi }{2}=i \\\ \end{aligned}
Hence, we have
i=(eiπ2)12=eiπ4=cosπ4+isinπ4=12+i2\sqrt{i}={{\left( {{e}^{\dfrac{i\pi }{2}}} \right)}^{\dfrac{1}{2}}}={{e}^{i\dfrac{\pi }{4}}}=\cos \dfrac{\pi }{4}+i\sin \dfrac{\pi }{4}=\dfrac{1}{\sqrt{2}}+\dfrac{i}{\sqrt{2}}
Also, we have
i=(ei5π2)12=e5π4=cos5π4+isin5π4=12i2\sqrt{i}={{\left( {{e}^{i\dfrac{5\pi }{2}}} \right)}^{\dfrac{1}{2}}}={{e}^{\dfrac{5\pi }{4}}}=\cos \dfrac{5\pi }{4}+i\sin \dfrac{5\pi }{4}=-\dfrac{1}{\sqrt{2}}-\dfrac{i}{\sqrt{2}}
Hence, we have
i=±12±i2\sqrt{i}=\pm \dfrac{1}{\sqrt{2}}\pm \dfrac{i}{\sqrt{2}}, which is the same as obtained above.
Hence following a similar procedure as above, we get
Re(1+i)=1+12,Im(1+i)=12 or Re(1+i)=112,Im(1+i)=12\operatorname{Re}\left( 1+\sqrt{i} \right)=1+\dfrac{1}{\sqrt{2}},\operatorname{Im}\left( 1+\sqrt{i} \right)=\dfrac{1}{\sqrt{2}}\text{ or }\operatorname{Re}\left( 1+\sqrt{i} \right)=1-\dfrac{1}{\sqrt{2}},\operatorname{Im}\left( 1+\sqrt{i} \right)=-\dfrac{1}{\sqrt{2}}
Hence options [a] and [c] are correct.