Solveeit Logo

Question

Physics Question on Properties of Solids

The reading of pressure metre attached with a closed pipe is 4.5×104N/m24.5 \times 10^4 \, N/m^2. On opening the valve, water starts flowing and the reading of pressure metre falls to 2.0×104N/m22.0 \times 10^4 \, N/m^2. The velocity of water is found to be Vm/s\sqrt{V} \, m/s. The value of VV is \\\\\\\_.

Answer

Using Bernoulli’s theorem for the flow of an ideal fluid:

P1+12ρv2=P2P_1 + \frac{1}{2} \rho v^2 = P_2

Given:
- P1=4.5×104N/m2P_1 = 4.5 \times 10^4 \, \text{N/m}^2,
- P2=2.0×104N/m2P_2 = 2.0 \times 10^4 \, \text{N/m}^2,
- ρ=1000kg/m3\rho = 1000 \, \text{kg/m}^3.

Substituting values:

4.5×104+121000v2=2.0×1044.5 \times 10^4 + \frac{1}{2} \cdot 1000 \cdot v^2 = 2.0 \times 10^4

Rearranging:

121000v2=4.5×1042.0×104\frac{1}{2} \cdot 1000 \cdot v^2 = 4.5 \times 10^4 - 2.0 \times 10^4

500v2=2.5×104500v^2 = 2.5 \times 10^4

v2=50    v=50m/s.v^2 = 50 \implies v = \sqrt{50} \, \text{m/s}.

Therefore: v=50m/s.v = 50 \, \text{m/s}.

The Correct answer is: 50 m/s