Solveeit Logo

Question

Question: The reaction sequence given below is carried out with 12 moles of X. The yield of the major product ...

The reaction sequence given below is carried out with 12 moles of X. The yield of the major product in each step is given below the product in parenthesis. The amount (in grams) of S produced is: [Atomic masses: C = 12 u, H = 1 u, Cl = 35.5 u, Br = 80 u]

CxHyFe tubeRed HotPAlCl3C2H5ClQCCl4NBSRΔalc.KOHSC_xH_y \xrightarrow[Fe \ tube]{Red \ Hot} P \xrightarrow[AlCl_3]{C_2H_5Cl} Q \xrightarrow[CCl_4]{NBS} R \xrightarrow[\Delta]{alc.KOH} S (X) (100%) (50%) (50%) (50%)

Answer

52

Explanation

Solution

The problem involves a sequence of organic reactions, and we need to calculate the final mass of the product S, considering the yield at each step.

Step 1: Identify X and P

The first reaction is CxHyFe tubeRed HotPC_xH_y \xrightarrow[Fe \ tube]{Red \ Hot} P. This reaction is characteristic of the trimerization of ethyne (acetylene) to form benzene.
Therefore, X is ethyne (C2H2C_2H_2) and P is benzene (C6H6C_6H_6).
The balanced equation is:

3C2H2Red Hot Fe tubeC6H63 C_2H_2 \xrightarrow[Red \ Hot \ Fe \ tube]{} C_6H_6

Given initial moles of X (C2H2C_2H_2) = 12 moles.
The yield for P is 100%.
From stoichiometry, 3 moles of C2H2C_2H_2 produce 1 mole of C6H6C_6H_6.
Moles of P produced = (12 moles C2H2)×1 mole C6H63 moles C2H2×100%=4 moles C6H6(12 \text{ moles } C_2H_2) \times \frac{1 \text{ mole } C_6H_6}{3 \text{ moles } C_2H_2} \times 100\% = 4 \text{ moles } C_6H_6.

Step 2: Identify Q

The second reaction is PAlCl3C2H5ClQP \xrightarrow[AlCl_3]{C_2H_5Cl} Q. This is a Friedel-Crafts alkylation reaction where benzene (P) reacts with chloroethane (C2H5ClC_2H_5Cl) in the presence of anhydrous AlCl3AlCl_3.
The product Q is ethylbenzene.

C6H6+C2H5ClAlCl3C6H5C2H5+HClC_6H_6 + C_2H_5Cl \xrightarrow{AlCl_3} C_6H_5C_2H_5 + HCl

Q = Ethylbenzene (C6H5C2H5C_6H_5C_2H_5)

The yield for Q is 50%.
Moles of Q produced = (4 moles C6H6)×50%=2 moles C6H5C2H5(4 \text{ moles } C_6H_6) \times 50\% = 2 \text{ moles } C_6H_5C_2H_5.

Step 3: Identify R

The third reaction is QCCl4NBSRQ \xrightarrow[CCl_4]{NBS} R. NBS (N-bromosuccinimide) in CCl4CCl_4 is a reagent used for benzylic bromination. Ethylbenzene (Q) has a benzylic hydrogen, which will be substituted by bromine.
The product R is (1-bromoethyl)benzene.

C6H5CH2CH3NBS/CCl4C6H5CH(Br)CH3+succinimideC_6H_5CH_2CH_3 \xrightarrow{NBS/CCl_4} C_6H_5CH(Br)CH_3 + \text{succinimide}

R = (1-bromoethyl)benzene (C6H5CH(Br)CH3C_6H_5CH(Br)CH_3)

The yield for R is 50%.
Moles of R produced = (2 moles C6H5C2H5)×50%=1 mole C6H5CH(Br)CH3(2 \text{ moles } C_6H_5C_2H_5) \times 50\% = 1 \text{ mole } C_6H_5CH(Br)CH_3.

Step 4: Identify S

The fourth reaction is RΔalc.KOHSR \xrightarrow[\Delta]{alc.KOH} S. Alcoholic KOH is a strong base used for dehydrohalogenation (elimination reaction). (1-bromoethyl)benzene (R) will undergo elimination to form an alkene.
The product S is styrene (phenylethene).

C6H5CH(Br)CH3alc.KOH,ΔC6H5CH=CH2+HBrC_6H_5CH(Br)CH_3 \xrightarrow{alc.KOH, \Delta} C_6H_5CH=CH_2 + HBr

S = Styrene (C6H5CH=CH2C_6H_5CH=CH_2)

The yield for S is 50%.
Moles of S produced = (1 mole C6H5CH(Br)CH3)×50%=0.5 moles C6H5CH=CH2(1 \text{ mole } C_6H_5CH(Br)CH_3) \times 50\% = 0.5 \text{ moles } C_6H_5CH=CH_2.

Step 5: Calculate the mass of S

The molecular formula of S (styrene) is C8H8C_8H_8.
Using the given atomic masses: C = 12 u, H = 1 u.
Molar mass of S = (8×12)+(8×1)=96+8=104 g/mol(8 \times 12) + (8 \times 1) = 96 + 8 = 104 \text{ g/mol}.

Amount of S produced (in grams) = Moles of S ×\times Molar mass of S
Amount of S = 0.5 moles×104 g/mol=52 grams0.5 \text{ moles} \times 104 \text{ g/mol} = 52 \text{ grams}.

The final amount of S produced is 52 grams.