Solveeit Logo

Question

Question: The ratio of the sums of first \(n\) even numbers and \(n\) odd numbers will be....

The ratio of the sums of first nn even numbers and nn odd numbers will be.

A

1:n1 : n

B

(n+1):1( n + 1 ) : 1

C

(n+1):n( n + 1 ) : n

D

(n1):1( n - 1 ) : 1

Answer

(n+1):n( n + 1 ) : n

Explanation

Solution

Let SEven =2+4+6+8+..S _ { \text {Even } } = 2 + 4 + 6 + 8 + \ldots \ldots . . \infty …..(i)

And SOdd =1+3+5+7+9+S _ { \text {Odd } } = 1 + 3 + 5 + 7 + 9 + \ldots \ldots \infty …..(ii)

Sum SE=n2[4+(n1)2]=n2[2n+2]=n22(n+1)S _ { E } = \frac { n } { 2 } [ 4 + ( n - 1 ) 2 ] = \frac { n } { 2 } [ 2 n + 2 ] = \frac { n } { 2 } 2 ( n + 1 )

And SO=n2[2+(n1)2]=n2(2n)S _ { O } = \frac { n } { 2 } [ 2 + ( n - 1 ) 2 ] = \frac { n } { 2 } ( 2 n )

NowSESO=(n+1)n\frac { S _ { E } } { S _ { O } } = \frac { ( n + 1 ) } { n } or SE:SO=(n+1):nS _ { E } : S _ { O } = ( n + 1 ) : n.