Solveeit Logo

Question

Question: The ratio of the sum of n terms of the two A.P's. be \(\frac{7n + 1}{4n + 27}\) and ratio of 11th te...

The ratio of the sum of n terms of the two A.P's. be 7n+14n+27\frac{7n + 1}{4n + 27} and ratio of 11th term is l then value of 111 × l is-

A

138

B

128

C

122

D

148

Answer

148

Explanation

Solution

Let first A.P. is a1, a1 + d1, a1 + 2d1…….

a1(first term), d1 (common difference)

Second A.P. is a2 , a2 + d2, a2 + 2d2……

a2 (first term), d2 (common difference)

Given is n/2[2a1+(n1)d1]n/2[2a2+(n1)d2]\frac{n/2\lbrack 2a_{1} + (n - 1)d_{1}\rbrack}{n/2\lbrack 2a_{2} + (n - 1)d_{2}\rbrack}= 7n+14n+27\frac{7n + 1}{4n + 27}

Ž a1+(n12)d1a2+(n12)d2\frac{a_{1} + \left( \frac{n - 1}{2} \right)d_{1}}{a_{2} + \left( \frac{n - 1}{2} \right)d_{2}}=7n+14n+27\frac{7n + 1}{4n + 27}

Put n12\frac{n - 1}{2}= 10 or n = 21 to get

a1+10d1a2+10d2\frac{a_{1} + 10d_{1}}{a_{2} + 10d_{2}}= 7×21+14×21+27\frac{7 \times 21 + 1}{4 \times 21 + 27}= 148111\frac{148}{111}