Solveeit Logo

Question

Physics Question on Kinetic molecular theory of gases

The ratio of the specific heats CPCV=γ\frac{C_{P}}{C_{V}}=\gamma in terms of degrees of freedom (n) is given by

A

(1+n3)\left(1+\frac{n}{3}\right)

B

(1+2n)\left(1+\frac{2}{n}\right)

C

(1+n2)\left(1+\frac{n}{2}\right)

D

(1+1n)\left(1+\frac{1}{n}\right)

Answer

(1+2n)\left(1+\frac{2}{n}\right)

Explanation

Solution

The internal energy for 1 mole of gas is given as
U=n2RdT=CvdTU =\frac{ n }{2} RdT = C _{ v } dT where nn is degrees of freedom
CpCv=RC _{ p }- C _{ v }= R
Cp=(1+n2)RCp =\left(1+\frac{ n }{2}\right) R
and CpCv=γ=(1+n2)Rn2=1+2n\frac{ C _{ p }}{ C _{ v }}=\gamma=\frac{\left(1+\frac{ n }{2}\right) R }{\frac{ n }{2}}=1+\frac{2}{ n }