Solveeit Logo

Question

Question: The ratio of the magnetic field at the centre of a current carrying circular wire and the magnetic f...

The ratio of the magnetic field at the centre of a current carrying circular wire and the magnetic field at the centre of a square coil made from the same length of wire will be

A

π242\frac { \pi ^ { 2 } } { 4 \sqrt { 2 } }

B

π282\frac { \pi ^ { 2 } } { 8 \sqrt { 2 } }

C

π22\frac { \pi } { 2 \sqrt { 2 } }

D

π42\frac { \pi } { 4 \sqrt { 2 } }

Answer

π282\frac { \pi ^ { 2 } } { 8 \sqrt { 2 } }

Explanation

Solution

Circular coil Square coil

Length L = 2π r Length L = 4a

Magnetic field B=μ04π2πirB = \frac { \mu _ { 0 } } { 4 \pi } \cdot \frac { 2 \pi i } { r } =μ04π4π2ir= \frac { \mu _ { 0 } } { 4 \pi } \cdot \frac { 4 \pi ^ { 2 } i } { r }

B=μ04π22iaB = \frac { \mu _ { 0 } } { 4 \pi } \cdot \frac { 2 \sqrt { 2 } i } { a } B=μ04π82iaB = \frac { \mu _ { 0 } } { 4 \pi } \cdot \frac { 8 \sqrt { 2 } i } { a }

Hence Bcircular Bsquare =π282\frac { B _ { \text {circular } } } { B _ { \text {square } } } = \frac { \pi ^ { 2 } } { 8 \sqrt { 2 } }