Solveeit Logo

Question

Physics Question on Atomic Spectra

The ratio of the kinetic energy to the total energy of an electron in Bohr orbit is

A

1 : -1

B

- 1 : 1

C

1 : 2

D

2 : -1

Answer

1 : -1

Explanation

Solution

K.E. of electron in Bohr orbit, K = 12ke2r\frac{1}{2} \frac{ke^2}{r}
P.E. of electron in Bohr orbit, P.E. = - ke2r\frac{ke^2}{r}
\therefore Total energy, E = K.E. + P.E = 12ke2rke2r=12ke2r\frac{1}{2} \frac{ke^2}{r} - \frac{ke^2}{r} = -\frac{1}{2} \frac{ke^2}{r}
\therefore K.E.E=12ke212ke2=11\frac{K.E.}{E} = \frac{\frac{1}{2} ke^2}{- \frac{1}{2} ke^2} = \frac{1}{-1}
\therefore K.E. : E = 1: -1