Solveeit Logo

Question

Physics Question on Dimensional Analysis

The ratio of the dimensions of Plancks constant and that of the moment of inertia is the dimensions of

A

frequency

B

velocity

C

angular momentum

D

time

Answer

frequency

Explanation

Solution

Energy, E=hvE=h v h=\Rightarrow h= Planck's constant =Ev=\frac{E}{v} [h]=[E][v]=[ML2T2][T1]\therefore [h] =\frac{[E]}{[v]}=\frac{\left[ ML ^{2} T ^{-2}\right]}{\left[ T ^{-1}\right]} =[ML2T1]=\left[ ML ^{2} T ^{-1}\right] and I=I= moment of inertia =MR2=M R^{2} [I]=[M][I2]=[MI2]\Rightarrow [I]=[ M ]\left[ I ^{2}\right]=\left[ MI ^{2}\right] Hence, [h][I]=[ML2T1][ML2]\frac{[h]}{[I]}=\frac{\left[ ML ^{2} T ^{-1}\right]}{\left[ ML ^{2}\right]} =[T1]=\left[ T ^{-1}\right] =1[T]==\frac{1}{[ T ]}= dimension of frequency