Solveeit Logo

Question

Physics Question on Dimensional Analysis

The ratio of the dimensions of Plancks constant and that of the moment of inertia is the dimension of

A

frequency

B

velocity

C

angular momentum

D

time

Answer

frequency

Explanation

Solution

E=hvE=h v
h=\Rightarrow h= Plancks constant =EV=\frac{E}{V}
[h]=[E][v]=[ML2T2][T1]\therefore[h]=\frac{[E]}{[v]}=\frac{\left[M L^{2} T^{-2}\right]}{\left[T^{-1}\right]}
=[ML2T1]=\left[M L^{2} T^{-1}\right]
and I= I= moment of inertia =MR2=M R^{2}
[I]=[M][L2]=[ML2]\Rightarrow[I]=[M]\left[L^{2}\right]=\left[M L^{2}\right]
Hence, [h][I]=[ML2T1][ML2]=[T1]\frac{[h]}{[I]}=\frac{\left[M L^{2} T^{-1}\right]}{\left[M L^{2}\right]}=\left[T^{-1}\right]
=1[T]==\frac{1}{[T]}= dimensions of frequency
Alternative: hI=E/vI\frac{h}{I}=\frac{E / v}{I}
=E×TI=(kgm2/s2)×s(kgm2)=\frac{E \times T}{I}=\frac{\left(k g-m^{2} / s^{2}\right) \times s}{\left(k g-m^{2}\right)}
=1s=1 time ==\frac{1}{s}=\frac{1}{\text { time }}= frequency
Thus, dimensions of hI\frac{h}{I} is same as of frequency.