Solveeit Logo

Question

Physics Question on Moment Of Inertia

The ratio of the accelerations for a solid sphere (mass m and radius R) rolling down an incline of angle θ\theta without slipping and slipping down the incline without rolling is

A

5 : 7

B

2 : 3

C

2 : 5

D

7 : 5

Answer

5 : 7

Explanation

Solution

The correct answer is A:5:75\ratio 7
Acceleration of the solid sphere slipping down the incline without rolling is
aslipping=gsinθ...(i)a_{slipping} = gsin \theta...(i)
Acceleration of the solid sphere rolling down the incline without slipping is
arolling=gsinθ1+k2R2=gsinθ1+25a_{rolling} = \frac{gsin\theta}{1 + \frac{k^2}{R^2}} = \frac{gsin\theta}{1 + \frac{2}{5}}
\bigg($$\therefore For solid sphere, \frac{k^2}{R^2} = \frac{2}{5}$$\bigg)
=57gsinθ...(ii)= \frac{5}{7} gsin\theta ...(ii)
Divide eqn. (ii) by eqn. (i), we get
arollingaslipping=57\frac{a_{rolling}}{a_{slipping}} = \frac{5}{7}