Question
Mathematics Question on Sequences and Series
The ratio of the A.M. and G.M. of two positive numbers a and b, is m : n. Show that a:b=(m+√m2−n2):(m−√m2−n2).
Answer
Let the two numbers be a and b.
A.M=2a+bandG.M.=√ab
According to the given condition,
2a+b√ab=nm
⇒4(ab)(a+b)2=n2m2
⇒(a+b)2=n24abm2
⇒(a+b)=n2abm...(1)
Using this in the identity (a-b) 2 = (a + b) 2- 4ab, we obtain
(a−b)2=n24abm2−4ab=n24ab(m2−n2)
⇒(a−b)=n2√ab√m2−n2...(2)
Adding (1) and (2), we obtain
2a=n2√ab(m+m2−n2)
⇒a=n√ab(m+m2−n2)
Substituting the value of a in (1), we obtain
b=n2√abm−n√ab(m+m2−n2)
=n√abm−n√abm2−n2
=n√ab(m−m2−n2)
∴a:b=ba=nab(m−m2−n2)nab(m+m2−n2)=(m−m2−n2)(m+m2−n2)
Thus, a:b=(m+m2−n2):(m−m2−n2).