Solveeit Logo

Question

Question: The ratio of sum of \(m\) and \(n\) terms of an A.P. is \(m ^ { 2 } : n ^ { 2 }\) , then the ratio o...

The ratio of sum of mm and nn terms of an A.P. is m2:n2m ^ { 2 } : n ^ { 2 } , then the ratio of mthm ^ { t h }and nthn ^ { t h } term will be.

A

m1n1\frac { m - 1 } { n - 1 }

B

n1m1\frac { n - 1 } { m - 1 }

C
D

2n12m1\frac { 2 n - 1 } { 2 m - 1 }

Answer
Explanation

Solution

Given that m2[2a+(m1)d]n2[2a+(n1)d]=m2n2\frac { \frac { m } { 2 } [ 2 a + ( m - 1 ) d ] } { \frac { n } { 2 } [ 2 a + ( n - 1 ) d ] } = \frac { m ^ { 2 } } { n ^ { 2 } }

\Rightarrow 2a+(m1)d2a+(n1)d=mn\frac { 2 a + ( m - 1 ) d } { 2 a + ( n - 1 ) d } = \frac { m } { n } \Rightarrow a+12(m1)da+12(n1)d=mn\frac { a + \frac { 1 } { 2 } ( m - 1 ) d } { a + \frac { 1 } { 2 } ( n - 1 ) d } = \frac { m } { n }

\Rightarrow an+12(m1)nd=am+12(n1)mda n + \frac { 1 } { 2 } ( m - 1 ) n d = a m + \frac { 1 } { 2 } ( n - 1 ) m d

\Rightarrow a(nm)+d2[mnnmn+m]=0a ( n - m ) + \frac { d } { 2 } [ m n - n - m n + m ] = 0

\Rightarrow a(nm)+d2(mn)=0a ( n - m ) + \frac { d } { 2 } ( m - n ) = 0 \Rightarrow a=d2a = \frac { d } { 2 } or d=2ad = 2 a

So, required ratio,

TmTn=a+(m1)da+(n1)d=a+(m1)2aa+(n1)2a\frac { T _ { m } } { T _ { n } } = \frac { a + ( m - 1 ) d } { a + ( n - 1 ) d } = \frac { a + ( m - 1 ) 2 a } { a + ( n - 1 ) 2 a }

=1+2m21+2n2=2m12n1= \frac { 1 + 2 m - 2 } { 1 + 2 n - 2 } = \frac { 2 m - 1 } { 2 n - 1 }.

Trick : Replace mm by 2m12 m - 1 and nn by 2n12 n - 1. Obviously if SmS _ { m } is of degree 2, then TmT _ { m } is of 11 linear.