Solveeit Logo

Question

Question: The ratio of sizes of two images, obtained on a fixed screen of a candle for two positions of a thin...

The ratio of sizes of two images, obtained on a fixed screen of a candle for two positions of a thin lens (focal length f), is b. If distance between candle and screen is d(> 4f), then f is –

A

d(2+β+1β)\frac { d } { \left( 2 + \sqrt { \beta } + \frac { 1 } { \sqrt { \beta } } \right) }

B

d(β+1β)\frac { d } { \left( \sqrt { \beta } + \frac { 1 } { \sqrt { \beta } } \right) }

C

d(1+β+1β)\frac { d } { \left( 1 + \sqrt { \beta } + \frac { 1 } { \sqrt { \beta } } \right) }

D

None of these

Answer

d(2+β+1β)\frac { d } { \left( 2 + \sqrt { \beta } + \frac { 1 } { \sqrt { \beta } } \right) }

Explanation

Solution

b = Ž x =(β1β+1)\left( \frac { \sqrt { \beta } - 1 } { \sqrt { \beta } + 1 } \right)d and f =