Solveeit Logo

Question

Question: The ratio of SI units to CGS units of G is \(\text{A}\text{. }{{10}^{3}}\) \(\text{B}\text{. }{...

The ratio of SI units to CGS units of G is
A. 103\text{A}\text{. }{{10}^{3}}
B. 102\text{B}\text{. }{{10}^{2}}
C. 102\text{C}\text{. }{{10}^{-2}}
D. 103\text{D}\text{. }{{10}^{-3}}

Explanation

Solution

From the formula for the gravitational force between two point sized bodies, we get that G=Fr2m1m2G=\dfrac{F{{r}^{2}}}{{{m}_{1}}{{m}_{2}}}. Use this equation for G and find the SI and CGS units of G. 1N = 105{{10}^{5}}dyn, 1m = 102{{10}^{2}}cm and 1kg = 103{{10}^{3}}g, these relations will help in find the ratio of SI unit to CGS unit of G.

Complete step-by-step answer :
G is the universal gravitational constant. It is a proportionality constant used in the equation of the gravitational force between two point sized bodies that are separated by a distance d, i.e. F=Gm1m2r2F=\dfrac{G{{m}_{1}}{{m}_{2}}}{{{r}^{2}}}
G=Fr2m1m2G=\dfrac{F{{r}^{2}}}{{{m}_{1}}{{m}_{2}}}…. (i)
Let us find the SI units of the gravitational constant G by using equation (i).
The SI unit of force F is Newton (N).
The SI unit of distance r is metre (m).
The SI units of masses m1{{m}_{1}} and m2{{m}_{2}} is kilogram (kg).
Therefore, the SI unit of G is N(m)2kg×kg=Nm2kg2=Nm2kg2\dfrac{N{{(m)}^{2}}}{kg\times kg}=\dfrac{N{{m}^{2}}}{k{{g}^{2}}}=N{{m}^{2}}k{{g}^{-2}} …. (ii)
Now, let us calculate the CGS unit of G.
The CGS unit of force F is dyne (dyn).
The CGS unit of distance r is centimetre (cm).
The CGS units of masses m1{{m}_{1}} and m2{{m}_{2}} is gram (g).
Therefore, the CGS unit of G is dyn(cm)2g×g=(dyn)cm2g2=(dyn)cm2g2\dfrac{dyn{{(cm)}^{2}}}{g\times g}=\dfrac{(dyn)c{{m}^{2}}}{{{g}^{2}}}=(dyn)c{{m}^{2}}{{g}^{-2}} …. (iii)
Now divide the Si unit (ii) of G by CGS unit (iii) of G.
SI unit of GCGS unit of G=Nm2kg2(dyn)cm2g2\dfrac{\text{SI unit of G}}{\text{CGS unit of G}}=\dfrac{N{{m}^{2}}k{{g}^{-2}}}{(dyn)c{{m}^{2}}{{g}^{-2}}} …. (iv).
1N = 105{{10}^{5}}dyn
1m = 102{{10}^{2}}cm
1kg = 103{{10}^{3}}g
Substitute the values of 1N, 1m and 1kg in equation (iv).
SI unit of GCGS unit of G=(105dyn)(102cm)2(103g)2(dyn)cm2g2=(105dyn)(104cm2)(106g2)(dyn)cm2g2=103\Rightarrow \dfrac{\text{SI unit of G}}{\text{CGS unit of G}}=\dfrac{\left( {{10}^{5}}dyn \right){{\left( {{10}^{2}}cm \right)}^{2}}{{\left( {{10}^{3}}g \right)}^{-2}}}{(dyn)c{{m}^{2}}{{g}^{-2}}}=\dfrac{\left( {{10}^{5}}dyn \right)\left( {{10}^{4}}c{{m}^{2}} \right)\left( {{10}^{-6}}{{g}^{-2}} \right)}{(dyn)c{{m}^{2}}{{g}^{-2}}}={{10}^{3}}
This means that the ratio of the SI unit to CGS unit of G is 103{{10}^{3}}.
Hence, the correct option is A.

Note : If you do not know the relation between the units N and dyn, then convert the N into MKS units.
We force is equal to mass times acceleration.
Therefore, the unit of force is kgms2kgm{{s}^{-2}}.
This means that 1N = 1kgms2kgm{{s}^{-2}}.
Similarly, 1dyn = 1gcms2gcm{{s}^{-2}}.
This means that 1N1dyn=1kgms21gcms2=(103g)(102cm)s21gcms2=105\dfrac{1N}{1dyn}=\dfrac{1kgm{{s}^{-2}}}{1gcm{{s}^{-2}}}=\dfrac{({{10}^{3}}g)({{10}^{2}}cm){{s}^{-2}}}{1gcm{{s}^{-2}}}={{10}^{5}}.
Hence, 1N = 105{{10}^{5}}dyn.