Solveeit Logo

Question

Question: The ratio of magnetic field to center of circular coil to magnetic field at distance x from the cent...

The ratio of magnetic field to center of circular coil to magnetic field at distance x from the centre of circular coil (xR=34\frac{x}{R}=\frac{3}{4})

A

74135\frac{74}{135}

B

44125\frac{44}{125}

C

64125\frac{64}{125}

D

34115\frac{34}{115}

Answer

64125\frac{64}{125}

Explanation

Solution

The magnetic field along the axis of a current loop is given by

B(x)=μ0IR22(R2+x2)3/2B(x) = \frac{\mu_0 I R^2}{2\left(R^2+x^2\right)^{3/2}}

and at the center,

B(0)=μ0I2R.B(0) = \frac{\mu_0 I}{2R}.

Thus, the ratio (considering the field at xx relative to that at the center) is

B(x)B(0)=μ0IR22(R2+x2)3/2μ0I2R=R3(R2+x2)3/2.\frac{B(x)}{B(0)} = \frac{\frac{\mu_0 I R^2}{2\left(R^2+x^2\right)^{3/2}}}{\frac{\mu_0 I}{2R}} = \frac{R^3}{\left(R^2+x^2\right)^{3/2}}.

Given xR=34\frac{x}{R}=\frac{3}{4}, so x=34Rx=\frac{3}{4}R. Therefore:

R2+x2=R2+(34R)2=R2+916R2=2516R2.R^2 + x^2 = R^2 + \left(\frac{3}{4}R\right)^2 = R^2 + \frac{9}{16}R^2 = \frac{25}{16}R^2.

Taking the power,

(R2+x2)3/2=(2516R2)3/2=(2516)3/2R3=12564R3.\left(R^2+x^2\right)^{3/2} = \left(\frac{25}{16}R^2\right)^{3/2} = \left(\frac{25}{16}\right)^{3/2} R^3 = \frac{125}{64}\, R^3.

Thus, the ratio becomes:

B(x)B(0)=R312564R3=64125.\frac{B(x)}{B(0)} = \frac{R^3}{\frac{125}{64}\, R^3} = \frac{64}{125}.