Solveeit Logo

Question

Question: The ratio in which the sphere \(x^{2} + y^{2} + z^{2} = 504\) divides the line segment AB joining th...

The ratio in which the sphere x2+y2+z2=504x^{2} + y^{2} + z^{2} = 504 divides the line segment AB joining the points A6mu(12,6mu4,6mu8)A\mspace{6mu}(12,\mspace{6mu} - 4,\mspace{6mu} 8) and (27,6mu9,6mu18)(27,\mspace{6mu} - 9,\mspace{6mu} 18) is given by

A

2:32:3 externally

B

2:32:3 internally

C

1:21:2 externally

D

None of these

Answer

2:32:3 externally

Explanation

Solution

Let the ratio is λ:1\lambda : 1 so the point on sphere is 27λ+12λ+1,9λ4λ+1,18λ+8λ+1\frac { 27 \lambda + 12 } { \lambda + 1 } , \frac { - 9 \lambda - 4 } { \lambda + 1 } , \frac { 18 \lambda + 8 } { \lambda + 1 }

Also, (27λ+12λ+1)2+(9λ+4λ+1)2+(18λ+8λ+1)2=504\left( \frac { 27 \lambda + 12 } { \lambda + 1 } \right) ^ { 2 } + \left( \frac { 9 \lambda + 4 } { \lambda + 1 } \right) ^ { 2 } + \left( \frac { 18 \lambda + 8 } { \lambda + 1 } \right) ^ { 2 } = 504

λ=23\lambda = \frac { - 2 } { 3 }, So that the ratio is 2 : 3 externally.