Solveeit Logo

Question

Question: The ratio in which the line \[x + y = 4\] divides the line joining the points \[\left( { - 1,1} \rig...

The ratio in which the line x+y=4x + y = 4 divides the line joining the points (1,1)\left( { - 1,1} \right) and (5,7)\left( {5,7} \right) is
A.1:21:2
B.2:12:1
C.3:23:2
D.3:13:1

Explanation

Solution

The equation of a straight line passing through two points (x1,y1)\left( {{x_1},{y_1}} \right) and (x2,y2)\left( {{x_2},{y_2}} \right) is yy1y2y1=xx1x2x1\dfrac{{y - {y_1}}}{{{y_2} - {y_1}}} = \dfrac{{x - {x_1}}}{{{x_2} - {x_1}}}.
If the point (x,y)\left( {x,y} \right) divides the line segment joining the points (x1,y1)\left( {{x_1},{y_1}} \right) and (x2,y2)\left( {{x_2},{y_2}} \right) in ratio 1:k1:k, then x=1.x2+k.x11+kx = \dfrac{{1.{x_2} + k.{x_1}}}{{1 + k}} and y=1.y2+k.y11+ky = \dfrac{{1.{y_2} + k.{y_1}}}{{1 + k}}.

Complete step-by-step answer:
Here, the given points are (1,1)\left( { - 1,1} \right) and (5,7)\left( {5,7} \right). Therefore, the equation of the straight line joining the points (1,1)\left( { - 1,1} \right) and (5,7)\left( {5,7} \right) is

y171=x(1)5(1) y16=x(1)6 y1=x+1 xy+2=0...............(1)  \dfrac{{y - 1}}{{7 - 1}} = \dfrac{{x - ( - 1)}}{{5 - ( - 1)}} \\\ \Rightarrow \dfrac{{y - 1}}{6} = \dfrac{{x - ( - 1)}}{6} \\\ \Rightarrow y - 1 = x + 1 \\\ \Rightarrow x - y + 2 = 0...............(1) \\\

The equation of the given line is
x+y4=0...............(2)x + y - 4 = 0...............(2)
Now, adding Eq. (1) and Eq. (2) we get,

2x2=0 x=1  2x - 2 = 0 \\\ \Rightarrow x = 1 \\\

Therefore, from Eq. (2) we get, y=(4x)=(41)=3y = (4 - x) = (4 - 1) = 3
So, the point of intersection of that two lines is (1,3)\left( {1,3} \right).
Now, let the point (1,3)\left( {1,3} \right) divide the line segment joining (1,1)\left( { - 1,1} \right) and (5,7)\left( {5,7} \right) in ratio 1:k1:k.
Therefore, by the section formula, if (x,y)\left( {x,y} \right) divides the line segment joining the points (x1,y1)\left( {{x_1},{y_1}} \right) and (x2,y2)\left( {{x_2},{y_2}} \right) in ratio 1:k1:k, then

x=1.x2+k.x11+k 1=1×5+k×(1)1+k 1+k=5k 2k=4 k=2  x = \dfrac{{1.{x_2} + k.{x_1}}}{{1 + k}} \\\ \Rightarrow 1 = \dfrac{{1 \times 5 + k \times ( - 1)}}{{1 + k}} \\\ \Rightarrow 1 + k = 5 - k \\\ \Rightarrow 2k = 4 \\\ \Rightarrow k = 2 \\\ y=1.y2+k.y11+k 3=1×7+k×11+k 3k+3=7+k 2k=4 k=2  y = \dfrac{{1.{y_2} + k.{y_1}}}{{1 + k}} \\\ \Rightarrow 3 = \dfrac{{1 \times 7 + k \times 1}}{{1 + k}} \\\ \Rightarrow 3k + 3 = 7 + k \\\ \Rightarrow 2k = 4 \\\ \Rightarrow k = 2 \\\

Hence, the line joining the points (1,1)\left( { - 1,1} \right) and (5,7)\left( {5,7} \right) is divided by the line x+y=4x + y = 4 in the ratio of 1:21:2.

Note: You have to know the formula properly which are
The equation of a straight line passing through two points (x1,y1)\left( {{x_1},{y_1}} \right) and (x2,y2)\left( {{x_2},{y_2}} \right) is yy1y2y1=xx1x2x1\dfrac{{y - {y_1}}}{{{y_2} - {y_1}}} = \dfrac{{x - {x_1}}}{{{x_2} - {x_1}}}. We can also express this equation in a different way as yy1xx1=y2y1x2x1\dfrac{{y - {y_1}}}{{x - {x_1}}} = \dfrac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}}.
The co-ordinate of a point which divides the straight line joining the two points (x1,y1)\left( {{x_1},{y_1}} \right) and (x2,y2)\left( {{x_2},{y_2}} \right) in ratio 1:k1:k is (1.x2+k.x11+k,1.y2+k.y11+k)\left( {\dfrac{{1.{x_2} + k.{x_1}}}{{1 + k}},\dfrac{{1.{y_2} + k.{y_1}}}{{1 + k}}} \right).