Solveeit Logo

Question

Question: The ratio in which the line segment joining the points \[\left( { - 3,10} \right)\] and \[\left( {6,...

The ratio in which the line segment joining the points (3,10)\left( { - 3,10} \right) and (6,8)\left( {6, - 8} \right) is divided by the point (1,6)\left( { - 1,6} \right) is 3:73:7.
(a) True
(b) False
(c) Ambiguous
(d) Data insufficient

Explanation

Solution

Here, we will use the section formula to find the ratio in which the point (1,6)\left( { - 1,6} \right) divide the line segment joining the points (3,10)\left( { - 3,10} \right) and (6,8)\left( {6, - 8} \right). Then we will check if the given statement is true, false or ambiguous.

Formula Used:
According to the section formula, the co-ordinates of a point dividing the line segment joining two points P(x1,y1)P\left( {{x_1},{y_1}} \right) and Q(x2,y2)Q\left( {{x_2},{y_2}} \right) in the ratio m:nm:n, are given by (mx1+nx2m+n,my1+ny2m+n)\left( {\dfrac{{m{x_1} + n{x_2}}}{{m + n}},\dfrac{{m{y_1} + n{y_2}}}{{m + n}}} \right).

Complete step-by-step answer:
Let the point (1,6)\left( { - 1,6} \right) divide the line segment joining the points (3,10)\left( { - 3,10} \right) and (6,8)\left( {6, - 8} \right) in the ratio k:1k:1.
The co-ordinates of the point dividing the line segment joining the points (3,10)\left( { - 3,10} \right) and (6,8)\left( {6, - 8} \right) in the ratio k:1k:1, are (1,6)\left( { - 1,6} \right).
Comparing the point (3,10)\left( { - 3,10} \right) and (x1,y1)\left( {{x_1},{y_1}} \right), we get
x1=3{x_1} = - 3 and y1=10{y_1} = 10
Comparing the point (6,8)\left( {6, - 8} \right) and (x2,y2)\left( {{x_2},{y_2}} \right), we get
x2=6{x_2} = 6 and y2=8{y_2} = - 8
Comparing the ratios k:1k:1 and m:nm:n, we get
m=km = k and n=1n = 1
Therefore, substituting x1=3{x_1} = - 3, y1=10{y_1} = 10, x2=6{x_2} = 6, y2=8{y_2} = - 8, m=km = k and n=1n = 1 in the section formula, (mx1+nx2m+n,my1+ny2m+n)\left( {\dfrac{{m{x_1} + n{x_2}}}{{m + n}},\dfrac{{m{y_1} + n{y_2}}}{{m + n}}} \right), we get
(1,6)=(k(3)+1(6)k+1,k(10)+1(8)k+1)\Rightarrow \left( { - 1,6} \right) = \left( {\dfrac{{k\left( { - 3} \right) + 1\left( 6 \right)}}{{k + 1}},\dfrac{{k\left( {10} \right) + 1\left( { - 8} \right)}}{{k + 1}}} \right)
Comparing the abscissa and the ordinate, we get the equations
1=k(3)+1(6)k+1\Rightarrow - 1 = \dfrac{{k\left( { - 3} \right) + 1\left( 6 \right)}}{{k + 1}} and 6=k(10)+1(8)k+16 = \dfrac{{k\left( {10} \right) + 1\left( { - 8} \right)}}{{k + 1}}
We will simplify these equations to get the ratio in which the point (1,6)\left( { - 1,6} \right) divide the line segment joining the points (3,10)\left( { - 3,10} \right) and (6,8)\left( {6, - 8} \right).
Multiplying the terms in the numerator of the equation 1=k(3)+1(6)k+1 - 1 = \dfrac{{k\left( { - 3} \right) + 1\left( 6 \right)}}{{k + 1}}, we get
1=3k+6k+1\Rightarrow - 1 = \dfrac{{ - 3k + 6}}{{k + 1}}
Multiplying both sides by k+1k + 1, we get
1(k+1)=3k+6\Rightarrow - 1\left( {k + 1} \right) = - 3k + 6
Multiplying the terms using the distributive law of multiplication, we get
k1=3k+6\Rightarrow - k - 1 = - 3k + 6
Adding 1 on both sides, we get
k1+1=3k+6+1 k=3k+7\begin{array}{l} \Rightarrow - k - 1 + 1 = - 3k + 6 + 1\\\ \Rightarrow - k = - 3k + 7\end{array}
Adding 3k3k on both sides, we get
k+3k=3k+7+3k 2k=7\begin{array}{l} \Rightarrow - k + 3k = - 3k + 7 + 3k\\\ \Rightarrow 2k = 7\end{array}
Dividing both sides by 2, we get
k=72 k1=72\begin{array}{l} \Rightarrow k = \dfrac{7}{2}\\\ \Rightarrow \dfrac{k}{1} = \dfrac{7}{2}\end{array}
Therefore, we get the ratio in which the point (1,6)\left( { - 1,6} \right) divide the line segment joining the points (3,10)\left( { - 3,10} \right) and (6,8)\left( {6, - 8} \right), as 7:27:2.
The given statement is incorrect.
Thus, the correct option is option (b) False.

Note: We used the terms ‘abscissa’ and ‘ordinate’ in the solution. A point in the XY plane can be written as (x,y)\left( {x,y} \right). Here, the abscissa of the point is xx, and the ordinate of the point is yy.
We can verify the ratio 7:27:2 by simplifying the equation formed by comparing the ordinates in the section formula.
Multiplying the terms in the numerator of the equation 6=k(10)+1(8)k+16 = \dfrac{{k\left( {10} \right) + 1\left( { - 8} \right)}}{{k + 1}}, we get
6=10k8k+1\Rightarrow 6 = \dfrac{{10k - 8}}{{k + 1}}
Multiplying both sides of the equation by k+1k + 1, we get
6(k+1)=10k8\Rightarrow 6\left( {k + 1} \right) = 10k - 8
Multiplying the terms using the distributive law of multiplication, we get
6k+6=10k8\Rightarrow 6k + 6 = 10k - 8
Adding 8 on both sides, we get
6k+6+8=10k8+8 6k+14=10k\begin{array}{l} \Rightarrow 6k + 6 + 8 = 10k - 8 + 8\\\ \Rightarrow 6k + 14 = 10k\end{array}
Subtracting 6k6k from both sides of the equation, we get
6k+146k=10k6k 14=4k\begin{array}{l} \Rightarrow 6k + 14 - 6k = 10k - 6k\\\ \Rightarrow 14 = 4k\end{array}
Dividing both sides by 4, we get
k=144\Rightarrow k = \dfrac{{14}}{4}
Simplifying the expression, we get
k=72 k1=72\begin{array}{l} \Rightarrow k = \dfrac{7}{2}\\\ \Rightarrow \dfrac{k}{1} = \dfrac{7}{2}\end{array}
Hence, we have verified that the ratio in which the point (1,6)\left( { - 1,6} \right) divide the line segment joining the points (3,10)\left( { - 3,10} \right) and (6,8)\left( {6, - 8} \right), as 7:27:2.