Question
Question: The ratio $\frac{2^{\log_{2^{1/4}} a} - 3^{\log_{27} (a^2+1)^3} - 2a}{7^{4\log_{49} a} - a - 1}$ sim...
The ratio 74log49a−a−12log21/4a−3log27(a2+1)3−2a simplifies to :

a2−a−1
a2+a−1
a2−a+
a2+a+1 (assuming option C is a typo and should be a2+a+1)
Solution
The given expression is 74log49a−a−12log21/4a−3log27(a2+1)3−2a.
First, simplify the terms in the numerator:
Term 1: 2log21/4a
Using the property logbkx=k1logbx, we have log21/4a=1/41log2a=4log2a.
So, 2log21/4a=24log2a=2log2a4.
Using the property blogbx=x, we get 2log2a4=a4.
Term 2: 3log27(a2+1)3
Using the property logbkx=k1logbx, we have log27(a2+1)3=log33(a2+1)3=31log3(a2+1)3.
Using the property logbxm=mlogbx, we get 31⋅3log3(a2+1)=log3(a2+1).
So, 3log27(a2+1)3=3log3(a2+1).
Using the property blogbx=x, we get 3log3(a2+1)=a2+1.
The numerator is a4−(a2+1)−2a=a4−a2−1−2a.
Now, simplify the terms in the denominator:
Term 1: 74log49a
Using the property mlogbx=logbxm, we have 4log49a=log49a4.
Using the property logbkx=k1logbx, we have log49a4=log72a4=21log7a4.
Using the property logbxm=mlogbx, we get 21⋅4log7a=2log7a=log7a2.
So, 74log49a=7log7a2.
Using the property blogbx=x, we get 7log7a2=a2.
The denominator is a2−a−1.
The expression simplifies to a2−a−1a4−a2−2a−1.
Let's perform polynomial division of the numerator by the denominator. Consider the division (a4−a2−2a−1)÷(a2−a−1). We can observe or perform long division that: a4−a2−2a−1=a4−a3−a2+a3−a2−a+a2−a−1 =a2(a2−a−1)+a(a2−a−1)+1(a2−a−1) =(a2−a−1)(a2+a+1).
So the expression becomes a2−a−1(a2−a−1)(a2+a+1). Assuming a2−a−1=0, we can cancel the term (a2−a−1). The simplified expression is a2+a+1.