Solveeit Logo

Question

Question: The ratio $\frac{2^{\log_{2^{1/4}} a} - 3^{\log_{27} (a^2+1)^3} - 2a}{7^{4\log_{49} a} - a - 1}$ sim...

The ratio 2log21/4a3log27(a2+1)32a74log49aa1\frac{2^{\log_{2^{1/4}} a} - 3^{\log_{27} (a^2+1)^3} - 2a}{7^{4\log_{49} a} - a - 1} simplifies to :

A

a2a1a^2 - a - 1

B

a2+a1a^2 + a - 1

C

a2a+a^2 - a +

Answer

a2+a+1a^2 + a + 1 (assuming option C is a typo and should be a2+a+1a^2 + a + 1)

Explanation

Solution

The given expression is 2log21/4a3log27(a2+1)32a74log49aa1\frac{2^{\log_{2^{1/4}} a} - 3^{\log_{27} (a^2+1)^3} - 2a}{7^{4\log_{49} a} - a - 1}.

First, simplify the terms in the numerator:

Term 1: 2log21/4a2^{\log_{2^{1/4}} a}

Using the property logbkx=1klogbx\log_{b^k} x = \frac{1}{k} \log_b x, we have log21/4a=11/4log2a=4log2a\log_{2^{1/4}} a = \frac{1}{1/4} \log_2 a = 4 \log_2 a.

So, 2log21/4a=24log2a=2log2a42^{\log_{2^{1/4}} a} = 2^{4 \log_2 a} = 2^{\log_2 a^4}.

Using the property blogbx=xb^{\log_b x} = x, we get 2log2a4=a42^{\log_2 a^4} = a^4.

Term 2: 3log27(a2+1)33^{\log_{27} (a^2+1)^3}

Using the property logbkx=1klogbx\log_{b^k} x = \frac{1}{k} \log_b x, we have log27(a2+1)3=log33(a2+1)3=13log3(a2+1)3\log_{27} (a^2+1)^3 = \log_{3^3} (a^2+1)^3 = \frac{1}{3} \log_3 (a^2+1)^3.

Using the property logbxm=mlogbx\log_b x^m = m \log_b x, we get 133log3(a2+1)=log3(a2+1)\frac{1}{3} \cdot 3 \log_3 (a^2+1) = \log_3 (a^2+1).

So, 3log27(a2+1)3=3log3(a2+1)3^{\log_{27} (a^2+1)^3} = 3^{\log_3 (a^2+1)}.

Using the property blogbx=xb^{\log_b x} = x, we get 3log3(a2+1)=a2+13^{\log_3 (a^2+1)} = a^2+1.

The numerator is a4(a2+1)2a=a4a212aa^4 - (a^2+1) - 2a = a^4 - a^2 - 1 - 2a.

Now, simplify the terms in the denominator:

Term 1: 74log49a7^{4\log_{49} a}

Using the property mlogbx=logbxmm \log_b x = \log_b x^m, we have 4log49a=log49a44\log_{49} a = \log_{49} a^4.

Using the property logbkx=1klogbx\log_{b^k} x = \frac{1}{k} \log_b x, we have log49a4=log72a4=12log7a4\log_{49} a^4 = \log_{7^2} a^4 = \frac{1}{2} \log_7 a^4.

Using the property logbxm=mlogbx\log_b x^m = m \log_b x, we get 124log7a=2log7a=log7a2\frac{1}{2} \cdot 4 \log_7 a = 2 \log_7 a = \log_7 a^2.

So, 74log49a=7log7a27^{4\log_{49} a} = 7^{\log_7 a^2}.

Using the property blogbx=xb^{\log_b x} = x, we get 7log7a2=a27^{\log_7 a^2} = a^2.

The denominator is a2a1a^2 - a - 1.

The expression simplifies to a4a22a1a2a1\frac{a^4 - a^2 - 2a - 1}{a^2 - a - 1}.

Let's perform polynomial division of the numerator by the denominator. Consider the division (a4a22a1)÷(a2a1)(a^4 - a^2 - 2a - 1) \div (a^2 - a - 1). We can observe or perform long division that: a4a22a1=a4a3a2+a3a2a+a2a1a^4 - a^2 - 2a - 1 = a^4 - a^3 - a^2 + a^3 - a^2 - a + a^2 - a - 1 =a2(a2a1)+a(a2a1)+1(a2a1)= a^2(a^2 - a - 1) + a(a^2 - a - 1) + 1(a^2 - a - 1) =(a2a1)(a2+a+1)= (a^2 - a - 1)(a^2 + a + 1).

So the expression becomes (a2a1)(a2+a+1)a2a1\frac{(a^2 - a - 1)(a^2 + a + 1)}{a^2 - a - 1}. Assuming a2a10a^2 - a - 1 \neq 0, we can cancel the term (a2a1)(a^2 - a - 1). The simplified expression is a2+a+1a^2 + a + 1.