Solveeit Logo

Question

Question: The rate of the reaction \(\text{ 2}{{\text{N}}_{\text{2}}}{{\text{O}}_{\text{5}}}\text{ }\to \text{...

The rate of the reaction  2N2O5  4NO2 + O2 \text{ 2}{{\text{N}}_{\text{2}}}{{\text{O}}_{\text{5}}}\text{ }\to \text{ 4N}{{\text{O}}_{\text{2}}}\text{ + }{{\text{O}}_{\text{2}}}\text{ } can be written in three ways:
 d(N2O5)dt=k[N2O5] d(N2O5)dt=!!!! [N2O5] d(N2O5)dt=k”[N2O5]  \text{ }\begin{matrix} -\dfrac{d({{\text{N}}_{\text{2}}}{{\text{O}}_{\text{5}}})}{dt} & = & \text{k}\left[ {{\text{N}}_{\text{2}}}{{\text{O}}_{\text{5}}} \right] \\\ \dfrac{d({{\text{N}}_{\text{2}}}{{\text{O}}_{\text{5}}})}{dt} & = & \text{k }\\!\\!'\\!\\!\text{ }\left[ {{\text{N}}_{\text{2}}}{{\text{O}}_{\text{5}}} \right] \\\ \dfrac{d({{\text{N}}_{\text{2}}}{{\text{O}}_{\text{5}}})}{dt} & = & \text{k''}\left[ {{\text{N}}_{\text{2}}}{{\text{O}}_{\text{5}}} \right] \\\ \end{matrix}\text{ }
Relationship between  k \text{ k } and  k !!!! \text{ k }\\!\\!'\\!\\!\text{ } between  k \text{ k } and  k” \text{ k'' } are:
A)  k !!!! = 2k ; k” = k \text{ k }\\!\\!'\\!\\!\text{ = 2k ; k'' = k }
B)  k !!!! = 2k ; k” = k2 \text{ k }\\!\\!'\\!\\!\text{ = 2k ; k'' = }\dfrac{\text{k}}{2}\text{ }
C)  k !!!! = 2k ; k” = 2k \text{ k }\\!\\!'\\!\\!\text{ = 2k ; k'' = 2k }
D)  k !!!! = k ; k” = k \text{ k }\\!\\!'\\!\\!\text{ = k ; k'' = k }

Explanation

Solution

For a chemical reaction, the rate of reaction at any time will depend on the concentration of reactant. As reaction proceeds the concentration of reactant keeps on falling. For a general reaction of  aA + bB  cC + dD \text{ aA + bB }\to \text{ cC + dD }
The rate of reaction is repressed in terms of decreases in the concentration of reactant per mole or the increase in the concentration of product per mole. Accordingly,
 r = 1adCAdt=1bdCBdt=1cdCCdt=1ddCDdt \text{ r = }-\dfrac{1}{a}\dfrac{d{{C}_{A}}}{dt}=-\dfrac{1}{b}\dfrac{d{{C}_{B}}}{dt}=\dfrac{1}{c}\dfrac{d{{C}_{C}}}{dt}=\dfrac{1}{d}\dfrac{d{{C}_{D}}}{dt}\text{ }

Complete step by step answer:
Here, we have given that the nitrogen pentoxide  N2O5 \text{ }{{\text{N}}_{\text{2}}}{{\text{O}}_{\text{5}}}\text{ } decomposes into the nitrogen dioxide  NO2 \text{ N}{{\text{O}}_{2}}\text{ }and oxygen gas  O2 \text{ }{{\text{O}}_{2}}\text{ }. The reaction is as shown below,
 2N2O5  4NO2 + O2 \text{ 2}{{\text{N}}_{\text{2}}}{{\text{O}}_{\text{5}}}\text{ }\to \text{ 4N}{{\text{O}}_{\text{2}}}\text{ + }{{\text{O}}_{\text{2}}}\text{ }
The rate of the reaction of decomposition of the nitrogen pentoxide can be written in terms of the decrease in the concentration of reactant which is  N2O5 \text{ }{{\text{N}}_{\text{2}}}{{\text{O}}_{\text{5}}}\text{ } or in terms of the decrease in the concentration of  NO2 \text{ N}{{\text{O}}_{2}}\text{ } and  O2 \text{ }{{\text{O}}_{2}}\text{ }.the rate of reaction is expressed as the follows,
 rate = 12d(N2O5)dt = 14d(NO2)dt =d(O2)dt \text{ rate = }-\dfrac{1}{2}\dfrac{d({{\text{N}}_{\text{2}}}{{\text{O}}_{\text{5}}})}{dt}\text{ = }\dfrac{1}{4}\dfrac{d(\text{N}{{\text{O}}_{\text{2}}})}{dt}\text{ }=\dfrac{d({{\text{O}}_{\text{2}}})}{dt}\text{ } (1)
We know that the,
 d(N2O5)dt=k[N2O5] d(N2O5)dt=!!!! [N2O5] d(N2O5)dt=k”[N2O5]  \text{ }\begin{matrix} -\dfrac{d({{\text{N}}_{\text{2}}}{{\text{O}}_{\text{5}}})}{dt} & = & \text{k}\left[ {{\text{N}}_{\text{2}}}{{\text{O}}_{\text{5}}} \right] \\\ \dfrac{d({{\text{N}}_{\text{2}}}{{\text{O}}_{\text{5}}})}{dt} & = & \text{k }\\!\\!'\\!\\!\text{ }\left[ {{\text{N}}_{\text{2}}}{{\text{O}}_{\text{5}}} \right] \\\ \dfrac{d({{\text{N}}_{\text{2}}}{{\text{O}}_{\text{5}}})}{dt} & = & \text{k''}\left[ {{\text{N}}_{\text{2}}}{{\text{O}}_{\text{5}}} \right] \\\ \end{matrix}\text{ } (2)
On substituting values in the equation (2) in (1).The rate equations can be written as,
 rate = 12k[N2O5] = 14!!!! [N2O5] =k”[N2O5] \text{ rate = }\dfrac{1}{2}\text{k}\left[ {{\text{N}}_{\text{2}}}{{\text{O}}_{\text{5}}} \right]\text{ = }\dfrac{1}{4}\text{k }\\!\\!'\\!\\!\text{ }\left[ {{\text{N}}_{\text{2}}}{{\text{O}}_{\text{5}}} \right]\text{ }=\text{k''}\left[ {{\text{N}}_{\text{2}}}{{\text{O}}_{\text{5}}} \right]\text{ }

On solving further cancel out the [N2O5]\left[ {{\text{N}}_{\text{2}}}{{\text{O}}_{\text{5}}} \right] form the rate equation, we get,
 rate = k2 = !!!! 4 = k” \text{ rate = }\dfrac{\text{k}}{\text{2}}\text{ = }\dfrac{\text{k }\\!\\!'\\!\\!\text{ }}{\text{4}}\text{ = k'' }
We are interested to find out the relationship between  k \text{ k } and  k !!!! \text{ k }\\!\\!'\\!\\!\text{ } between  k \text{ k } and  k” \text{ k'' }. On solving further we get the relations as follows,
 k2 = !!!! 4   k !!!! = 2k  \begin{aligned} & \text{ }\dfrac{\text{k}}{\text{2}}\text{ = }\dfrac{\text{k }\\!\\!'\\!\\!\text{ }}{\text{4}}\text{ } \\\ & \therefore \text{ k }\\!\\!'\\!\\!\text{ = 2k } \\\ \end{aligned}
Similarly,
 k2 = k” \text{ }\dfrac{\text{k}}{\text{2}}\text{ = k'' }
Thus, relationship between  k \text{ k } and  k !!!! \text{ k }\\!\\!'\\!\\!\text{ } between  k \text{ k } and  k” \text{ k'' } is, !!!! = 2k \text{k }\\!\\!'\\!\\!\text{ = 2k } and  k2 = k” \text{ }\dfrac{\text{k}}{\text{2}}\text{ = k'' }.
So, the correct answer is “Option B”.

Note: Note that, the  dCA or dCN2O5 \text{ }-d{{C}_{A}}\text{ or }-d{{C}_{{{\text{N}}_{\text{2}}}{{\text{O}}_{\text{5}}}}}\text{ } is an infinitesimally small decrease in the concentration of reactant in a small interval of time  dt \text{ }dt\text{ }.the k is also referred as the velocity of a reaction. The concentration is expressed in terms of molarity. Here, the 2 moles of  N2O5 \text{ }{{\text{N}}_{\text{2}}}{{\text{O}}_{\text{5}}}\text{ }decomposes and produces 4 moles of  NO2 \text{ N}{{\text{O}}_{2}}\text{ } and 1 mole of  O2 \text{ }{{\text{O}}_{2}}\text{ },thus the rate of disappearance of reactants and appearance of product may be different, but are related.