Solveeit Logo

Question

Chemistry Question on Chemical Kinetics

The rate of a first order reaction is 0.04molL1s10.04 \, \text{mol} \, \text{L}^{-1} \, \text{s}^{-1} at 10 minutes and 0.03molL1s10.03 \, \text{mol} \, \text{L}^{-1} \, \text{s}^{-1} at 20 minutes after initiation. Half-life of the reaction is \\_\\_\\_\\_ minutes. (Given log2=0.3010,log3=0.4771\log 2 = 0.3010, \, \log 3 = 0.4771)

Answer

Given that the rate of a first-order reaction is decreasing over time, we can use the integrated rate law for first-order kinetics:

Rate = k[A]0ektk[A]_0 e^{-kt}

At time t=10t = 10 min:

0.04 = k[A]0ek×600k[A]_0 e^{-k \times 600}

At time t=20t = 20 min:

0.03 = k[A]0ek×1200k[A]_0 e^{-k \times 1200}

Dividing equation (2) by equation (1):

0.030.04=ek×(1200600)\frac{0.03}{0.04} = e^{-k \times (1200 - 600)}

43=e600k\frac{4}{3} = e^{-600k}

Taking natural log:

ln(43)=600k\ln \left( \frac{4}{3} \right) = 600k

Now solve for t12t_{\frac{1}{2}} using:

t12=ln2kt_{\frac{1}{2}} = \frac{\ln 2}{k}

t12=600ln2ln(43)t_{\frac{1}{2}} = \frac{600 \ln 2}{\ln \left( \frac{4}{3} \right)} sec.

Now using the given values:

t12=600×log2log4log3=10×0.30100.60200.4771t_{\frac{1}{2}} = 600 \times \frac{\log 2}{\log 4 - \log 3} = 10 \times \frac{0.3010}{0.6020 - 0.4771} min

t12=24.08t_{\frac{1}{2}} = 24.08 min

t12=24t_{\frac{1}{2}} = 24