Solveeit Logo

Question

Question: The rate constants for decomposition of acetaldehyde have been measured over the temperature range 7...

The rate constants for decomposition of acetaldehyde have been measured over the temperature range 700-1000 K.

The data has been analysed by plotting lnk\ln k vs 103T\frac{10^3}{T} graph. The value of activation energy for the reaction is ______ kJ mol1^{-1}. (Nearest integer) (Given : R = 8.31 J K1^{-1} mol1^{-1})

Answer

154 kJ mol1^{-1}

Explanation

Solution

The Arrhenius equation in linear form is:

lnk=lnAEaRT\ln k = \ln A - \frac{E_a}{RT}

When plotted as lnk\ln k vs. 103T\frac{10^3}{T}, note that:

1T=1103(103T)\frac{1}{T} = \frac{1}{10^3} \left(\frac{10^3}{T}\right)

Thus the equation becomes:

lnk=lnAEaR1103(103T)\ln k = \ln A - \frac{E_a}{R} \cdot \frac{1}{10^3}\left(\frac{10^3}{T}\right)

which is of the form lnk=constant+[Ea103R](103T)\ln k = \text{constant} + \left[-\frac{E_a}{10^3 R}\right]\left(\frac{10^3}{T}\right).

Given that the slope of this plot is 18.5-18.5, we have:

Ea103R=18.5Ea103R=18.5-\frac{E_a}{10^3 R} = -18.5 \quad \Longrightarrow \quad \frac{E_a}{10^3 R} = 18.5

Solving for EaE_a:

Ea=18.5×103×RE_a = 18.5 \times 10^3 \times R

With R=8.31JK1mol1R = 8.31\, \text{J}\,\text{K}^{-1}\,\text{mol}^{-1},

Ea=18.5×103×8.31J mol1153735J mol1E_a = 18.5 \times 10^3 \times 8.31 \, \text{J mol}^{-1} \approx 153735 \, \text{J mol}^{-1}

Converting to kJ mol1^{-1}:

Ea153.7kJ mol1154kJ mol1(nearest integer)E_a \approx 153.7\, \text{kJ mol}^{-1} \approx 154\, \text{kJ mol}^{-1}\quad (\text{nearest integer}).