Solveeit Logo

Question

Question: The rate constant of a reaction is \[1.5{\text{ }} \times {\text{ 1}}{{\text{0}}^7}{\text{ }}{{\text...

The rate constant of a reaction is 1.5 × 107 s11.5{\text{ }} \times {\text{ 1}}{{\text{0}}^7}{\text{ }}{{\text{s}}^{ - 1}} at 50C{50^ \circ }C and 4.5 × 107 s14.5{\text{ }} \times {\text{ 1}}{{\text{0}}^7}{\text{ }}{{\text{s}}^{ - 1}} at 100C{100^ \circ }C. Calculate the Arrhenius parameter A and Ea{E_a}.

Explanation

Solution

We have the value of rate constant for both reactions. Both the reactions are of first order. We have to find Arrhenius parameter, A and activation energy Ea{E_a} for the reaction. We will use the relation of temperature with activation energy and then by using activation energy we will find the Arrhenius parameter.
Formula Used:
(i) log10k2k1 = Ea2.303R(1T1 - 1T2)(i){\text{ lo}}{{\text{g}}_{10}}\dfrac{{{k_2}}}{{{k_1}}}{\text{ = }}\dfrac{{{E_a}}}{{2.303R}}\left( {\dfrac{1}{{{T_1}}}{\text{ - }}\dfrac{1}{{{T_2}}}} \right)
(ii) log10k = log10A - Ea2.303RT(ii){\text{ lo}}{{\text{g}}_{10}}{\text{k = lo}}{{\text{g}}_{10}}{\text{A - }}\dfrac{{{E_a}}}{{2.303RT}}

Complete answer:
Since rate of the reaction is given at different temperature we can find the value of activation energy by using the given relation,
 log10k2k1 = Ea2.303R(1T1 - 1T2){\text{ lo}}{{\text{g}}_{10}}\dfrac{{{k_2}}}{{{k_1}}}{\text{ = }}\dfrac{{{E_a}}}{{2.303R}}\left( {\dfrac{1}{{{T_1}}}{\text{ - }}\dfrac{1}{{{T_2}}}} \right)
Let us consider rate of reaction at temperature T1 {T_{1{\text{ }}}} be 1.5 × 107 s11.5{\text{ }} \times {\text{ 1}}{{\text{0}}^7}{\text{ }}{{\text{s}}^{ - 1}} and the rate of reaction at temperature T2{T_2} be 4.5 × 107 s14.5{\text{ }} \times {\text{ 1}}{{\text{0}}^7}{\text{ }}{{\text{s}}^{ - 1}} . Hence,
T1 = 50 + 273 = 323 K{T_{1{\text{ }}}} = {\text{ 50 + 273 = 323 K}}
T= 100 + 273 = 373 K{T_{{\text{2 }}}} = {\text{ 100 + 273 = 373 K}}
 k1 = 1.5 × 107 s1{\text{ }}{{\text{k}}_1}{\text{ = }}1.5{\text{ }} \times {\text{ 1}}{{\text{0}}^7}{\text{ }}{{\text{s}}^{ - 1}}
k2 = 4.5 × 107 s1{k_2}{\text{ = }}4.5{\text{ }} \times {\text{ 1}}{{\text{0}}^7}{\text{ }}{{\text{s}}^{ - 1}}
On substituting the above values we get the result as,
 log10k2k1 = Ea2.303R(1T1 - 1T2){\text{ lo}}{{\text{g}}_{10}}\dfrac{{{k_2}}}{{{k_1}}}{\text{ = }}\dfrac{{{E_a}}}{{2.303R}}\left( {\dfrac{1}{{{T_1}}}{\text{ - }}\dfrac{1}{{{T_2}}}} \right)
 log104.5 × 1071.5 × 107 = Ea2.303R(1323 - 1373){\text{ lo}}{{\text{g}}_{10}}\dfrac{{4.5{\text{ }} \times {\text{ 1}}{{\text{0}}^7}}}{{1.5{\text{ }} \times {\text{ 1}}{{\text{0}}^7}}}{\text{ = }}\dfrac{{{E_a}}}{{2.303R}}\left( {\dfrac{1}{{323}}{\text{ - }}\dfrac{1}{{373}}} \right)
 log103 = Ea2.303 × 8.314(50323 × 373){\text{ lo}}{{\text{g}}_{10}}{\text{3 = }}\dfrac{{{E_a}}}{{2.303{\text{ }} \times {\text{ 8}}{\text{.314}}}}\left( {\dfrac{{50}}{{323{\text{ }} \times {\text{ 373}}}}} \right)
On solving the equation we get the result as,
 Ea = 2.2 × 104 J mol1{\text{ }}{{\text{E}}_a}{\text{ = 2}}{\text{.2 }} \times {\text{ 1}}{{\text{0}}^4}{\text{ J mo}}{{\text{l}}^{ - 1}}
Thus we get the value of activation energy for the reaction. Now we will calculate the value of Arrhenius constant by using the value of activation energy as,
 log10k = log10A - Ea2.303RT{\text{ lo}}{{\text{g}}_{10}}{\text{k = lo}}{{\text{g}}_{10}}{\text{A - }}\dfrac{{{E_a}}}{{2.303RT}}
Here the value of k is 1.5 × 107 s11.5{\text{ }} \times {\text{ 1}}{{\text{0}}^7}{\text{ }}{{\text{s}}^{ - 1}} and value of T is = 50 + 273 = 323 K = {\text{ 50 + 273 = 323 K}}. On substituting the values we get the result as,
 log101.5 × 107 = log10A - 2.2 × 1042.303 × R = 8.314 × 323{\text{ lo}}{{\text{g}}_{10}}{\text{1}}{\text{.5 }} \times {\text{ 1}}{{\text{0}}^7}{\text{ = lo}}{{\text{g}}_{10}}{\text{A - }}\dfrac{{2.2{\text{ }} \times {\text{ }}{{10}^4}}}{{2.303{\text{ }} \times {\text{ R = 8}}{\text{.314 }} \times {\text{ 323}}}}
 log101.5 × 107 = log10A - 3.55{\text{ lo}}{{\text{g}}_{10}}{\text{1}}{\text{.5 }} \times {\text{ 1}}{{\text{0}}^7}{\text{ = lo}}{{\text{g}}_{10}}{\text{A - 3}}{\text{.55}}
On solving the above equation we get,
A = 5.42 × 1010 s1{\text{A = 5}}{\text{.42 }} \times {\text{ 1}}{{\text{0}}^{10}}{\text{ }}{{\text{s}}^{ - 1}}
Thus we get the value of Arrhenius constant and activation energy of the reaction by using the relation between them.

Note:
We use the value of R = 8.314{\text{R = 8}}{\text{.314}} in the above solution. We must convert the temperature into Kelvin scale before putting in the formula we used. Since activation energy is a form of energy, therefore its unit is Joule. For finding the values of logarithmic functions, we can use a log table. Also some basic values of logarithmic function must be remembered.