Solveeit Logo

Question

Question: The rate constant of a reaction at 27°C is 3 x 10$^{-3}$ min$^{-1}$. The fraction of molecule crossi...

The rate constant of a reaction at 27°C is 3 x 103^{-3} min1^{-1}. The fraction of molecule crossing the energy barrier if the reaction at that temperature is 103^{-3}%. If temperature is increased, the maximum value of rate constant K can be attained is x x 100 min1^{-1}. The value of x is

Answer

3

Explanation

Solution

The fraction of molecules crossing the energy barrier is given by the Boltzmann factor, eEa/RTe^{-E_a/RT}.

Given fraction at T=27C=27+273=300 KT = 27^\circ\text{C} = 27 + 273 = 300 \text{ K} is 103%10^{-3}\%.

Fraction =103100=105= \frac{10^{-3}}{100} = 10^{-5}.

So, at T=300 KT = 300 \text{ K}, eEa/RT=105e^{-E_a/RT} = 10^{-5}.

The Arrhenius equation relates the rate constant (kk) to the pre-exponential factor (AA), activation energy (EaE_a), gas constant (RR), and absolute temperature (TT):

k=AeEa/RTk = A e^{-E_a/RT}

We are given the rate constant at 27C27^\circ\text{C} is k=3×103 min1k = 3 \times 10^{-3} \text{ min}^{-1}.

Substituting the values into the Arrhenius equation:

3×103=A×(eEa/RT)3 \times 10^{-3} = A \times (e^{-E_a/RT})

3×103=A×1053 \times 10^{-3} = A \times 10^{-5}

Now, we can solve for the pre-exponential factor AA:

A=3×103105=3×103×105=3×10(3+5)=3×102 min1A = \frac{3 \times 10^{-3}}{10^{-5}} = 3 \times 10^{-3} \times 10^5 = 3 \times 10^{(-3+5)} = 3 \times 10^2 \text{ min}^{-1}.

The pre-exponential factor AA represents the theoretical maximum value of the rate constant that can be achieved when all collisions are effective, which occurs as the temperature approaches infinity (TT \to \infty). In this limit, eEa/RTe0=1e^{-E_a/RT} \to e^0 = 1, so kAk \to A.

Thus, the maximum value of the rate constant KK is equal to AA.

Kmax=A=3×102 min1K_{\text{max}} = A = 3 \times 10^2 \text{ min}^{-1}.

The problem states that the maximum value of the rate constant is x×100 min1x \times 100 \text{ min}^{-1}.

We have Kmax=3×102 min1=3×100 min1K_{\text{max}} = 3 \times 10^2 \text{ min}^{-1} = 3 \times 100 \text{ min}^{-1}.

Comparing 3×100 min13 \times 100 \text{ min}^{-1} with x×100 min1x \times 100 \text{ min}^{-1}, we find x=3x = 3.