Solveeit Logo

Question

Chemistry Question on Chemical Kinetics

The rate constant for the decomposition of N2O5N_2O_5 at various temperatures is given below:

**T/°C **020406080
10 5 x k/s-10.07871.7025.71782140

Draw a graph between ln k and 1T\frac 1T and calculate the values of AA and EaE_a.
Predict the rate constant at 30 ºC and 50 ºC.

Answer

From the given data, we obtain

T/°C020406080
T/K273293313333353
1T\frac 1T/K -13.66×10-33.41×10-33.19×10-33.0×10-32.83 ×10-3
10 5 x k/s-10.07871.7025.71782140
ln k- 7.147- 4.075- 1.359- 0.5773.063
graph between ln k and 1/T

Slop of the line,

y2y1x2x1=12.301 K\frac {y_2-y_1}{x_2-x_1} = -12.301\ K

According to Arrhenius equation,

Slope=EaRSlope = -\frac {E_a}{R}
Ea=Slope×RE_a = - Slope \times R
Ea =-(-12.301 k) x (8.314 JK-1mol-1)
Ea =102.27 kJ mol-1
Again,

ln k=ln AEaRTln\ k = ln \ A-\frac {E_a}{RT}

ln A=ln kEaRTln\ A = ln \ k-\frac {E_a}{RT}

When T=273 kWhen\ T = 273\ k
ln k=7.147ln \ k = -7.147
Then,

ln A=7.17+102.27×1038.314×2.73ln\ A = - 7.17 + \frac {102.27 \times 10^3}{8.314 \times 2.73}

= 37.91137.911
Therefore, A=2.91×106A = 2.91 \times 10^6


when T = 30+273 K = 303 K
1T\frac 1T = 0.0033 K = 3.3 x 10-3 K
Then,
At 1T\frac 1T = 3.3 x 10-3 K
ln k = - 2.8
Therefore, k=6.08×102s1k = 6.08 \times 10^{-2} s^{-1}
Again when T = 50 + 273 = 323 K
1T\frac 1T = 0.0031 K = 3.1 x 10-3 K
Then,
At 1T\frac 1T = 3.1 x 10-3 K
ln k = - 0.5
Therefore, k=0.607 s1k = 0.607 \ s^{-1}